Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981471192> ?p ?o ?g. }
- W1981471192 endingPage "302" @default.
- W1981471192 startingPage "283" @default.
- W1981471192 abstract "In this article, we study minimization of the energy of a Landau-de Gennes liquid crystal elastomer. The total energy consists of the sum of the Lagrangian elastic stored energy function of the elastomer and the Eulerian Landau-de Gennes energy of the liquid crystal. There are two related sources of anisotropy in the model, that of the rigid units represented by the traceless nematic order tensor $Q$, and the positive definite step-length tensor $L$ characterizing the anisotropy of the network.This work is motivated by the study of cytoskeletal networks which can be regarded as consisting of rigid rod units crosslinked into a polymeric-type network.Due to the mixed Eulerian-Lagrangian structure of the energy, it is essential that the deformation maps $varphi$ be invertible. For this, we require sufficient regularity of the fields $(varphi, Q)$ of the problem, and that the deformation map satisfies the Ciarlet-Nečas injectivity condition. These, in turn, determine what boundary conditions are admissible, which include the case of Dirichlet conditions on both fields. Alternatively, the approach of including the Rapini-Papoular surface energy for the pull-back tensor $tilde Q$ is also discussed. The regularity requirements also lead us to consider powers of the gradient of the order tensor $Q$ higher than quadratic in the energy. We assume polyconvexity of the stored energy function with respect to the effective deformation tensor and apply methods of calculus of variations from isotropic nonlinear elasticity.Recovery of minimizing sequences of deformation gradients from the corresponding sequences of effective deformation tensors requires invertibility of the anisotropic shape tensor $L$. We formulate a necessary and sufficient condition to guarantee this invertibility property in terms of the growth to infinity of the bulk liquid crystal energy $f(Q)$, as the minimum eigenvalue of $Q$ approaches the singular limit of $-frac{1}{3}$. It turns out that $L$ becomes singular as the minimum eigenvalue of $Q$ reaches $-frac{1}{3}$. Lower bounds on the eigenvalues of $Q$ are needed to ensure compatibility between the theories of Landau-de Gennes and Maier-Saupe of nematics [5]." @default.
- W1981471192 created "2016-06-24" @default.
- W1981471192 creator A5001030325 @default.
- W1981471192 creator A5057631072 @default.
- W1981471192 creator A5077426865 @default.
- W1981471192 date "2015-01-01" @default.
- W1981471192 modified "2023-10-16" @default.
- W1981471192 title "A Landau--de Gennes theory of liquid crystal elastomers" @default.
- W1981471192 cites W1518472176 @default.
- W1981471192 cites W1965274240 @default.
- W1981471192 cites W1977302783 @default.
- W1981471192 cites W1978838995 @default.
- W1981471192 cites W1990379748 @default.
- W1981471192 cites W1992958970 @default.
- W1981471192 cites W1994649787 @default.
- W1981471192 cites W2000086584 @default.
- W1981471192 cites W2003628538 @default.
- W1981471192 cites W2008789543 @default.
- W1981471192 cites W2014975887 @default.
- W1981471192 cites W2017004354 @default.
- W1981471192 cites W2020558613 @default.
- W1981471192 cites W2029527621 @default.
- W1981471192 cites W2039925534 @default.
- W1981471192 cites W2042468428 @default.
- W1981471192 cites W2047122434 @default.
- W1981471192 cites W2047971250 @default.
- W1981471192 cites W2050572655 @default.
- W1981471192 cites W2061037843 @default.
- W1981471192 cites W2066196783 @default.
- W1981471192 cites W2066875242 @default.
- W1981471192 cites W2070811036 @default.
- W1981471192 cites W2076027344 @default.
- W1981471192 cites W2083636316 @default.
- W1981471192 cites W2087980535 @default.
- W1981471192 cites W2088703872 @default.
- W1981471192 cites W2090113159 @default.
- W1981471192 cites W2091345502 @default.
- W1981471192 cites W2101844142 @default.
- W1981471192 cites W2117425975 @default.
- W1981471192 cites W2162832307 @default.
- W1981471192 cites W2163570307 @default.
- W1981471192 cites W2177134853 @default.
- W1981471192 cites W2963613067 @default.
- W1981471192 cites W2995213727 @default.
- W1981471192 cites W3104956129 @default.
- W1981471192 cites W2529425547 @default.
- W1981471192 doi "https://doi.org/10.3934/dcdss.2015.8.283" @default.
- W1981471192 hasPublicationYear "2015" @default.
- W1981471192 type Work @default.
- W1981471192 sameAs 1981471192 @default.
- W1981471192 citedByCount "2" @default.
- W1981471192 countsByYear W19814711922017 @default.
- W1981471192 countsByYear W19814711922023 @default.
- W1981471192 crossrefType "journal-article" @default.
- W1981471192 hasAuthorship W1981471192A5001030325 @default.
- W1981471192 hasAuthorship W1981471192A5057631072 @default.
- W1981471192 hasAuthorship W1981471192A5077426865 @default.
- W1981471192 hasConcept C121332964 @default.
- W1981471192 hasConcept C129844170 @default.
- W1981471192 hasConcept C13274807 @default.
- W1981471192 hasConcept C134306372 @default.
- W1981471192 hasConcept C155281189 @default.
- W1981471192 hasConcept C158622935 @default.
- W1981471192 hasConcept C171338203 @default.
- W1981471192 hasConcept C184050105 @default.
- W1981471192 hasConcept C2524010 @default.
- W1981471192 hasConcept C26873012 @default.
- W1981471192 hasConcept C33923547 @default.
- W1981471192 hasConcept C43058520 @default.
- W1981471192 hasConcept C53469067 @default.
- W1981471192 hasConcept C62520636 @default.
- W1981471192 hasConcept C74650414 @default.
- W1981471192 hasConcept C85725439 @default.
- W1981471192 hasConceptScore W1981471192C121332964 @default.
- W1981471192 hasConceptScore W1981471192C129844170 @default.
- W1981471192 hasConceptScore W1981471192C13274807 @default.
- W1981471192 hasConceptScore W1981471192C134306372 @default.
- W1981471192 hasConceptScore W1981471192C155281189 @default.
- W1981471192 hasConceptScore W1981471192C158622935 @default.
- W1981471192 hasConceptScore W1981471192C171338203 @default.
- W1981471192 hasConceptScore W1981471192C184050105 @default.
- W1981471192 hasConceptScore W1981471192C2524010 @default.
- W1981471192 hasConceptScore W1981471192C26873012 @default.
- W1981471192 hasConceptScore W1981471192C33923547 @default.
- W1981471192 hasConceptScore W1981471192C43058520 @default.
- W1981471192 hasConceptScore W1981471192C53469067 @default.
- W1981471192 hasConceptScore W1981471192C62520636 @default.
- W1981471192 hasConceptScore W1981471192C74650414 @default.
- W1981471192 hasConceptScore W1981471192C85725439 @default.
- W1981471192 hasIssue "2" @default.
- W1981471192 hasLocation W19814711921 @default.
- W1981471192 hasOpenAccess W1981471192 @default.
- W1981471192 hasPrimaryLocation W19814711921 @default.
- W1981471192 hasRelatedWork W136413090 @default.
- W1981471192 hasRelatedWork W1999267628 @default.
- W1981471192 hasRelatedWork W2048358971 @default.
- W1981471192 hasRelatedWork W2066983943 @default.
- W1981471192 hasRelatedWork W2078972086 @default.