Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981489013> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1981489013 endingPage "2742" @default.
- W1981489013 startingPage "2734" @default.
- W1981489013 abstract "Physical vapor deposition (PVD) using ionized metal plasmas (ionized PVD or IPVD) is widely used to deposit conducting diffusion barriers and liners such as Ta and TaN for use in ultra-large-scale integrated (ULSI) interconnect stacks. Ionized PVD films exhibit the low resistivity, high density, and good adhesion to underlying dielectric desired for this application. On the other hand, extending PVD beyond the 45 nm technology node is problematic since IPVD may not provide sufficient step coverage to reliably coat features having high aspect ratio and sub-100 nm dimensions. Alternatively, chemical vapor deposition (CVD) and atomic layer deposition (ALD) can be used to deposit highly conformal metal films, but the electrical performance and interfacial quality may not equal that of PVD. To address future ULSI barrier∕liner deposition needs, a method providing PVD-like film quality and CVD-like step coverage would be highly attractive. We have recently reported a hybrid approach to film deposition, referred to as chemically enhanced physical vapor deposition (CEPVD), in which a chemical precursor is introduced at the substrate during IPVD to provide a CVD component to the overall deposition process. The isotropic precursor flux is intended to provide film deposition on surfaces that are not impacted by the directional ions, such as the lower sidewall of a narrow via or trench. Conversely, the kinetic energy delivered to the surface by the flux of ionized metal may serve to enhance the desorption of CVD byproducts, reduce incorporation of impurities, and increase film density. In order to investigate the potential of CEPVD to deposit barrier∕liner films, we have focused on the Ta-N material system since Ta∕TaN is widely used as a diffusion barrier in Cu damascene processing. IPVD TaN films were deposited by reactive sputtering of a Ta target in Ar∕N2 using a planar magnetron and internal rf coils to provide a secondary ionization plasma for the sputtered neutrals. CEPVD was carried out by introducing a Ta-containing, organometallic precursor [tert-butylimino tris(diethylamino) tantalum] in the vicinity of the substrate surface during IPVD. Film thickness and step coverage were determined by cross-sectional scanning electron microscopy (SEM). Film composition, chemical state, and crystal structure were characterized using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and x-ray diffraction, respectively. Resistivity was measured by four-point probe. Cross-sectional SEM showed improved step coverage over IPVD TaN. CEPVD film properties were highly process dependent; however, unlike IPVD TaNx films that vary in stoichiometry but not purity, CEPVD “TaN” films contained relatively large amounts of carbon (∼30%–60%) and could best be described as TaCxNy. Resistivity as low as ∼370μΩcm was obtained for planar films of approximately 90 nm in thickness." @default.
- W1981489013 created "2016-06-24" @default.
- W1981489013 creator A5029248580 @default.
- W1981489013 creator A5031810848 @default.
- W1981489013 creator A5067546220 @default.
- W1981489013 date "2004-11-01" @default.
- W1981489013 modified "2023-10-16" @default.
- W1981489013 title "Chemically enhanced physical vapor deposition of tantalum nitride-based films for ultra-large-scale integrated devices" @default.
- W1981489013 cites W1967916336 @default.
- W1981489013 cites W1974378707 @default.
- W1981489013 cites W1979877555 @default.
- W1981489013 cites W1984023234 @default.
- W1981489013 cites W1987462145 @default.
- W1981489013 cites W1988375063 @default.
- W1981489013 cites W1991190052 @default.
- W1981489013 cites W1991824515 @default.
- W1981489013 cites W1994585107 @default.
- W1981489013 cites W1998437576 @default.
- W1981489013 cites W1998468429 @default.
- W1981489013 cites W2007551590 @default.
- W1981489013 cites W2014649041 @default.
- W1981489013 cites W2035253779 @default.
- W1981489013 cites W2039843244 @default.
- W1981489013 cites W2051346942 @default.
- W1981489013 cites W2065422658 @default.
- W1981489013 cites W2076463716 @default.
- W1981489013 cites W2156844210 @default.
- W1981489013 doi "https://doi.org/10.1116/1.1808744" @default.
- W1981489013 hasPublicationYear "2004" @default.
- W1981489013 type Work @default.
- W1981489013 sameAs 1981489013 @default.
- W1981489013 citedByCount "5" @default.
- W1981489013 countsByYear W19814890132015 @default.
- W1981489013 countsByYear W19814890132020 @default.
- W1981489013 crossrefType "journal-article" @default.
- W1981489013 hasAuthorship W1981489013A5029248580 @default.
- W1981489013 hasAuthorship W1981489013A5031810848 @default.
- W1981489013 hasAuthorship W1981489013A5067546220 @default.
- W1981489013 hasConcept C151730666 @default.
- W1981489013 hasConcept C171250308 @default.
- W1981489013 hasConcept C19067145 @default.
- W1981489013 hasConcept C192562407 @default.
- W1981489013 hasConcept C2778112282 @default.
- W1981489013 hasConcept C2779227376 @default.
- W1981489013 hasConcept C2816523 @default.
- W1981489013 hasConcept C49040817 @default.
- W1981489013 hasConcept C51576277 @default.
- W1981489013 hasConcept C57410435 @default.
- W1981489013 hasConcept C64297162 @default.
- W1981489013 hasConcept C69544855 @default.
- W1981489013 hasConcept C86803240 @default.
- W1981489013 hasConceptScore W1981489013C151730666 @default.
- W1981489013 hasConceptScore W1981489013C171250308 @default.
- W1981489013 hasConceptScore W1981489013C19067145 @default.
- W1981489013 hasConceptScore W1981489013C192562407 @default.
- W1981489013 hasConceptScore W1981489013C2778112282 @default.
- W1981489013 hasConceptScore W1981489013C2779227376 @default.
- W1981489013 hasConceptScore W1981489013C2816523 @default.
- W1981489013 hasConceptScore W1981489013C49040817 @default.
- W1981489013 hasConceptScore W1981489013C51576277 @default.
- W1981489013 hasConceptScore W1981489013C57410435 @default.
- W1981489013 hasConceptScore W1981489013C64297162 @default.
- W1981489013 hasConceptScore W1981489013C69544855 @default.
- W1981489013 hasConceptScore W1981489013C86803240 @default.
- W1981489013 hasIssue "6" @default.
- W1981489013 hasLocation W19814890131 @default.
- W1981489013 hasOpenAccess W1981489013 @default.
- W1981489013 hasPrimaryLocation W19814890131 @default.
- W1981489013 hasRelatedWork W1998994326 @default.
- W1981489013 hasRelatedWork W2048542173 @default.
- W1981489013 hasRelatedWork W2088627333 @default.
- W1981489013 hasRelatedWork W2232915596 @default.
- W1981489013 hasRelatedWork W2380675628 @default.
- W1981489013 hasRelatedWork W2898050266 @default.
- W1981489013 hasRelatedWork W2909146734 @default.
- W1981489013 hasRelatedWork W3010468778 @default.
- W1981489013 hasRelatedWork W3048662541 @default.
- W1981489013 hasRelatedWork W4312637428 @default.
- W1981489013 hasVolume "22" @default.
- W1981489013 isParatext "false" @default.
- W1981489013 isRetracted "false" @default.
- W1981489013 magId "1981489013" @default.
- W1981489013 workType "article" @default.