Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981496001> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W1981496001 endingPage "336" @default.
- W1981496001 startingPage "321" @default.
- W1981496001 abstract "Risk assessment of modeling predictions is becoming increasingly important as input to decision makers. Probabilistic risk analysis is typically expensive to perform since it generallyrequires the calculation of a model output Probability Distribution Function (PDF) followed by the integration of the risk portion of the PDF. Here we describe the new risk analysis Guided Monte Carlo (GMC) technique. It maintains the global coverage of Monte Carlo (MC) while judiciously combining model reruns with efficient sensitivity analysis predictions to accurately evaluate the integrated risk portion of the PDF. This GMC technique will facilitate risk analysis of complex models, where the expense was previously prohibitive. Two examples are presented to illustrate the technique, its computational savings and broad applicability. These are an ordinary differential equation based chemical kinetics model and an analytic dosimetry model. For any particular example, the degree of savings will depend on the relative risk being evaluated. In general, the highest fractional degree of savings with the GMC technique will occur for estimating risk levels that are specified in the far wing of the PDF.If no savings are possible, the GMC technique defaults to the true MC limit. In the illustrations presented here, the GMC analysis saved approximately a factor of four in computational effort relative to that of a full MC analysis. Furthermore, the GMC technique can also be implemented with other possible sampling strategies, such as Latin Hypercube, when appropriate." @default.
- W1981496001 created "2016-06-24" @default.
- W1981496001 creator A5019365403 @default.
- W1981496001 creator A5076389862 @default.
- W1981496001 date "1997-04-01" @default.
- W1981496001 modified "2023-09-27" @default.
- W1981496001 title "Risk analysis by the guided monte carlo technique" @default.
- W1981496001 cites W1974104322 @default.
- W1981496001 cites W1995404763 @default.
- W1981496001 cites W2001807699 @default.
- W1981496001 cites W2027281242 @default.
- W1981496001 cites W2041988397 @default.
- W1981496001 cites W2042201268 @default.
- W1981496001 cites W2044960217 @default.
- W1981496001 cites W2100047952 @default.
- W1981496001 cites W2135395636 @default.
- W1981496001 cites W2158734140 @default.
- W1981496001 doi "https://doi.org/10.1080/00949659708811815" @default.
- W1981496001 hasPublicationYear "1997" @default.
- W1981496001 type Work @default.
- W1981496001 sameAs 1981496001 @default.
- W1981496001 citedByCount "8" @default.
- W1981496001 countsByYear W19814960012012 @default.
- W1981496001 countsByYear W19814960012014 @default.
- W1981496001 countsByYear W19814960012016 @default.
- W1981496001 crossrefType "journal-article" @default.
- W1981496001 hasAuthorship W1981496001A5019365403 @default.
- W1981496001 hasAuthorship W1981496001A5076389862 @default.
- W1981496001 hasConcept C105795698 @default.
- W1981496001 hasConcept C112930515 @default.
- W1981496001 hasConcept C119857082 @default.
- W1981496001 hasConcept C126255220 @default.
- W1981496001 hasConcept C149782125 @default.
- W1981496001 hasConcept C189430467 @default.
- W1981496001 hasConcept C19499675 @default.
- W1981496001 hasConcept C20820323 @default.
- W1981496001 hasConcept C33923547 @default.
- W1981496001 hasConcept C41008148 @default.
- W1981496001 hasConcept C71924100 @default.
- W1981496001 hasConceptScore W1981496001C105795698 @default.
- W1981496001 hasConceptScore W1981496001C112930515 @default.
- W1981496001 hasConceptScore W1981496001C119857082 @default.
- W1981496001 hasConceptScore W1981496001C126255220 @default.
- W1981496001 hasConceptScore W1981496001C149782125 @default.
- W1981496001 hasConceptScore W1981496001C189430467 @default.
- W1981496001 hasConceptScore W1981496001C19499675 @default.
- W1981496001 hasConceptScore W1981496001C20820323 @default.
- W1981496001 hasConceptScore W1981496001C33923547 @default.
- W1981496001 hasConceptScore W1981496001C41008148 @default.
- W1981496001 hasConceptScore W1981496001C71924100 @default.
- W1981496001 hasIssue "1-4" @default.
- W1981496001 hasLocation W19814960011 @default.
- W1981496001 hasOpenAccess W1981496001 @default.
- W1981496001 hasPrimaryLocation W19814960011 @default.
- W1981496001 hasRelatedWork W113783313 @default.
- W1981496001 hasRelatedWork W2073277625 @default.
- W1981496001 hasRelatedWork W2329791227 @default.
- W1981496001 hasRelatedWork W2372067902 @default.
- W1981496001 hasRelatedWork W2380257336 @default.
- W1981496001 hasRelatedWork W2908307790 @default.
- W1981496001 hasRelatedWork W3125105008 @default.
- W1981496001 hasRelatedWork W3153718203 @default.
- W1981496001 hasRelatedWork W4254105385 @default.
- W1981496001 hasRelatedWork W54846940 @default.
- W1981496001 hasVolume "57" @default.
- W1981496001 isParatext "false" @default.
- W1981496001 isRetracted "false" @default.
- W1981496001 magId "1981496001" @default.
- W1981496001 workType "article" @default.