Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981508030> ?p ?o ?g. }
- W1981508030 endingPage "644" @default.
- W1981508030 startingPage "634" @default.
- W1981508030 abstract "The coexistence of magmatic anhydrite and sulfide minerals in non-arc-related mafic magmas has only rarely been documented. Likewise the S isotope fractionation between sulfate and sulfide in mafic rocks has infrequently been measured. In the Kharaelakh intrusion associated with the world-famous Noril’sk ore district in Siberia coexisting magmatic anhydrite and sulfide minerals have been identified. Sulfur isotope compositions of the anhydrite–sulfide assemblages have been measured via both ion microprobe and conventional analyses to help elucidate the origin of the anhydrite–sulfide pairs. Magmatic anhydrite and chalcopyrite are characterized by δ34S values between 18.8‰ and 22.8‰, and 9.3‰ and 13.2‰, respectfully. Coexisting anhydrite and chalcopyrite show Δ values that fall between 8.5‰ and 11.9‰. Anhydrite in the Kharaelakh intrusion is most readily explained by the assimilation of sulfate from country rocks; partial reduction to sulfide led to mixing between sulfate-derived sulfide and sulfide of mantle origin. The variable anhydrite and sulfide δ34S values are a function of differing degrees of sulfate reduction, variable mixing of sulfate-derived and mantle sulfide, incomplete isotopic homogenization of the magma, and a lack of uniform attainment of isotopic equilibrium during subsolidus cooling. The δ34S values of sulfide minerals have changed much less with cooling than have anhydrite values due in large part to the high sulfide/sulfate ratio. Variations in both sulfide and anhydrite δ34S values indicate that isotopically distinct domains existed on a centimeter scale. Late stage hydrothermal anhydrite and pyrite also occur associated with Ca-rich hydrous alteration assemblages (e.g., thomsonite, prehnite, pectolite, epidote, xonotlite). δ34S values of secondary hydrothermal anhydrite and pyrite determined by conventional analyses are in the same range as those of the magmatic minerals. Anhydrite–pyrite Δ values are in the 9.1–10.1‰ range, and are smaller than anticipated for the low temperatures indicated by the silicate alteration assemblages. The small Δ values are suggestive of either sulfate–sulfide isotopic disequilibrium or closure of the system to further exchange between ∼550 and 600 °C. Our results confirm the importance of the assimilation of externally derived sulfur in the generation of the elevated δ34S values in the Kharaelakh intrusion, but highlight the sulfur isotopic variability that may occur in magmatic systems. In addition, our results confirm the need for more precise experimental determination of sulfate–sulfide sulfur isotope fractionation factors in high-T systems." @default.
- W1981508030 created "2016-06-24" @default.
- W1981508030 creator A5010072468 @default.
- W1981508030 creator A5014742790 @default.
- W1981508030 creator A5030394446 @default.
- W1981508030 creator A5060933989 @default.
- W1981508030 date "2010-01-01" @default.
- W1981508030 modified "2023-10-15" @default.
- W1981508030 title "Micro-scale S isotope studies of the Kharaelakh intrusion, Noril’sk region, Siberia: Constraints on the genesis of coexisting anhydrite and sulfide minerals" @default.
- W1981508030 cites W1765155541 @default.
- W1981508030 cites W1970548478 @default.
- W1981508030 cites W1973305248 @default.
- W1981508030 cites W1976273059 @default.
- W1981508030 cites W1979166946 @default.
- W1981508030 cites W1987275845 @default.
- W1981508030 cites W1987405372 @default.
- W1981508030 cites W1990322558 @default.
- W1981508030 cites W1995906873 @default.
- W1981508030 cites W2003037435 @default.
- W1981508030 cites W2004485257 @default.
- W1981508030 cites W2010724918 @default.
- W1981508030 cites W2014873995 @default.
- W1981508030 cites W2022980556 @default.
- W1981508030 cites W2049956359 @default.
- W1981508030 cites W2057620806 @default.
- W1981508030 cites W2068699789 @default.
- W1981508030 cites W2075931141 @default.
- W1981508030 cites W2079567648 @default.
- W1981508030 cites W2089615853 @default.
- W1981508030 cites W2108037464 @default.
- W1981508030 cites W2123260607 @default.
- W1981508030 cites W2143047176 @default.
- W1981508030 cites W2146252397 @default.
- W1981508030 cites W2150229553 @default.
- W1981508030 cites W2166916464 @default.
- W1981508030 cites W2186908455 @default.
- W1981508030 cites W2323950155 @default.
- W1981508030 doi "https://doi.org/10.1016/j.gca.2009.10.003" @default.
- W1981508030 hasPublicationYear "2010" @default.
- W1981508030 type Work @default.
- W1981508030 sameAs 1981508030 @default.
- W1981508030 citedByCount "37" @default.
- W1981508030 countsByYear W19815080302012 @default.
- W1981508030 countsByYear W19815080302013 @default.
- W1981508030 countsByYear W19815080302014 @default.
- W1981508030 countsByYear W19815080302015 @default.
- W1981508030 countsByYear W19815080302016 @default.
- W1981508030 countsByYear W19815080302017 @default.
- W1981508030 countsByYear W19815080302018 @default.
- W1981508030 countsByYear W19815080302019 @default.
- W1981508030 countsByYear W19815080302020 @default.
- W1981508030 countsByYear W19815080302021 @default.
- W1981508030 countsByYear W19815080302022 @default.
- W1981508030 countsByYear W19815080302023 @default.
- W1981508030 crossrefType "journal-article" @default.
- W1981508030 hasAuthorship W1981508030A5010072468 @default.
- W1981508030 hasAuthorship W1981508030A5014742790 @default.
- W1981508030 hasAuthorship W1981508030A5030394446 @default.
- W1981508030 hasAuthorship W1981508030A5060933989 @default.
- W1981508030 hasConcept C127313418 @default.
- W1981508030 hasConcept C151730666 @default.
- W1981508030 hasConcept C156622251 @default.
- W1981508030 hasConcept C165205528 @default.
- W1981508030 hasConcept C167284885 @default.
- W1981508030 hasConcept C17409809 @default.
- W1981508030 hasConcept C178790620 @default.
- W1981508030 hasConcept C185592680 @default.
- W1981508030 hasConcept C199289684 @default.
- W1981508030 hasConcept C2776044767 @default.
- W1981508030 hasConcept C2776062231 @default.
- W1981508030 hasConcept C2776152364 @default.
- W1981508030 hasConcept C2777163820 @default.
- W1981508030 hasConcept C2778188036 @default.
- W1981508030 hasConcept C2778343803 @default.
- W1981508030 hasConcept C2779229104 @default.
- W1981508030 hasConcept C2780184401 @default.
- W1981508030 hasConcept C2780416900 @default.
- W1981508030 hasConcept C2780596425 @default.
- W1981508030 hasConcept C518881349 @default.
- W1981508030 hasConcept C544778455 @default.
- W1981508030 hasConceptScore W1981508030C127313418 @default.
- W1981508030 hasConceptScore W1981508030C151730666 @default.
- W1981508030 hasConceptScore W1981508030C156622251 @default.
- W1981508030 hasConceptScore W1981508030C165205528 @default.
- W1981508030 hasConceptScore W1981508030C167284885 @default.
- W1981508030 hasConceptScore W1981508030C17409809 @default.
- W1981508030 hasConceptScore W1981508030C178790620 @default.
- W1981508030 hasConceptScore W1981508030C185592680 @default.
- W1981508030 hasConceptScore W1981508030C199289684 @default.
- W1981508030 hasConceptScore W1981508030C2776044767 @default.
- W1981508030 hasConceptScore W1981508030C2776062231 @default.
- W1981508030 hasConceptScore W1981508030C2776152364 @default.
- W1981508030 hasConceptScore W1981508030C2777163820 @default.
- W1981508030 hasConceptScore W1981508030C2778188036 @default.
- W1981508030 hasConceptScore W1981508030C2778343803 @default.
- W1981508030 hasConceptScore W1981508030C2779229104 @default.
- W1981508030 hasConceptScore W1981508030C2780184401 @default.
- W1981508030 hasConceptScore W1981508030C2780416900 @default.