Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981509416> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W1981509416 abstract "The advent of non von Neumann computational models, specifically neuromorphic architectures, has engendered a new class of challenges for computer architects. On the one hand, each neuron-like computational element must consume minimal power and area to enable scaling up to biological scales of billions of neurons; this rules out direct support for complex and expensive features like floating point and transcendental functions. On the other hand, to fully benefit from cortical properties and operations, neuromorphic architectures must support complex non-linear neuronal behaviors. This semantic gap between the simple and power-efficient processing elements and complex neuronal behaviors has rekindled a RISC vs. CISC-like debate within the neuromorphic hardware design community. In this paper, we address the aforementioned semantic gap for a recently-described digital neuromorphic architecture that constitutes simple Linear-Leak Integrate-and-Fire (LLIF) spiking neurons as processing primitives. We show that despite the simplicity of LLIF primitives, a broad class of complex neuronal behaviors can be emulated by composing assemblies of such primitives with low area and power overheads. Furthermore, we demonstrate that for the LLIF primitives without built-in mechanisms for synaptic plasticity, two well-known neural learning rules-spike timing dependent plasticity and Hebbian learning-can be emulated via assemblies of LLIF primitives. By bridging the semantic gap for one such system we enable neuromorphic system developers, in general, to keep their hardware design simple and power-efficient and at the same time enjoy the benefits of complex neuronal behaviors essential for robust and accurate cortical simulation." @default.
- W1981509416 created "2016-06-24" @default.
- W1981509416 creator A5001381023 @default.
- W1981509416 creator A5018704289 @default.
- W1981509416 creator A5052869119 @default.
- W1981509416 creator A5066025287 @default.
- W1981509416 date "2013-02-01" @default.
- W1981509416 modified "2023-09-24" @default.
- W1981509416 title "Bridging the semantic gap: Emulating biological neuronal behaviors with simple digital neurons" @default.
- W1981509416 cites W1577757039 @default.
- W1981509416 cites W1966722314 @default.
- W1981509416 cites W1975412204 @default.
- W1981509416 cites W1976606492 @default.
- W1981509416 cites W1984326747 @default.
- W1981509416 cites W1984461952 @default.
- W1981509416 cites W1985940938 @default.
- W1981509416 cites W2001763155 @default.
- W1981509416 cites W2007983873 @default.
- W1981509416 cites W2009944441 @default.
- W1981509416 cites W2014093524 @default.
- W1981509416 cites W2076184423 @default.
- W1981509416 cites W2096596318 @default.
- W1981509416 cites W2106010231 @default.
- W1981509416 cites W2109492604 @default.
- W1981509416 cites W2115010184 @default.
- W1981509416 cites W2117770051 @default.
- W1981509416 cites W2123820663 @default.
- W1981509416 cites W2131763976 @default.
- W1981509416 cites W2135908272 @default.
- W1981509416 cites W2136960281 @default.
- W1981509416 cites W2141727932 @default.
- W1981509416 cites W2148605318 @default.
- W1981509416 cites W2157239334 @default.
- W1981509416 cites W2159648763 @default.
- W1981509416 cites W2161676162 @default.
- W1981509416 cites W2162019295 @default.
- W1981509416 cites W2168558032 @default.
- W1981509416 doi "https://doi.org/10.1109/hpca.2013.6522342" @default.
- W1981509416 hasPublicationYear "2013" @default.
- W1981509416 type Work @default.
- W1981509416 sameAs 1981509416 @default.
- W1981509416 citedByCount "16" @default.
- W1981509416 countsByYear W19815094162013 @default.
- W1981509416 countsByYear W19815094162014 @default.
- W1981509416 countsByYear W19815094162016 @default.
- W1981509416 countsByYear W19815094162017 @default.
- W1981509416 countsByYear W19815094162018 @default.
- W1981509416 countsByYear W19815094162019 @default.
- W1981509416 countsByYear W19815094162020 @default.
- W1981509416 countsByYear W19815094162022 @default.
- W1981509416 crossrefType "proceedings-article" @default.
- W1981509416 hasAuthorship W1981509416A5001381023 @default.
- W1981509416 hasAuthorship W1981509416A5018704289 @default.
- W1981509416 hasAuthorship W1981509416A5052869119 @default.
- W1981509416 hasAuthorship W1981509416A5066025287 @default.
- W1981509416 hasConcept C111472728 @default.
- W1981509416 hasConcept C138885662 @default.
- W1981509416 hasConcept C154945302 @default.
- W1981509416 hasConcept C174348530 @default.
- W1981509416 hasConcept C2780586882 @default.
- W1981509416 hasConcept C31258907 @default.
- W1981509416 hasConcept C41008148 @default.
- W1981509416 hasConceptScore W1981509416C111472728 @default.
- W1981509416 hasConceptScore W1981509416C138885662 @default.
- W1981509416 hasConceptScore W1981509416C154945302 @default.
- W1981509416 hasConceptScore W1981509416C174348530 @default.
- W1981509416 hasConceptScore W1981509416C2780586882 @default.
- W1981509416 hasConceptScore W1981509416C31258907 @default.
- W1981509416 hasConceptScore W1981509416C41008148 @default.
- W1981509416 hasLocation W19815094161 @default.
- W1981509416 hasOpenAccess W1981509416 @default.
- W1981509416 hasPrimaryLocation W19815094161 @default.
- W1981509416 hasRelatedWork W1159231614 @default.
- W1981509416 hasRelatedWork W1530688075 @default.
- W1981509416 hasRelatedWork W1807477017 @default.
- W1981509416 hasRelatedWork W18977309 @default.
- W1981509416 hasRelatedWork W2230691193 @default.
- W1981509416 hasRelatedWork W2916567375 @default.
- W1981509416 hasRelatedWork W2998028709 @default.
- W1981509416 hasRelatedWork W3040662175 @default.
- W1981509416 hasRelatedWork W4248389398 @default.
- W1981509416 hasRelatedWork W2247596074 @default.
- W1981509416 isParatext "false" @default.
- W1981509416 isRetracted "false" @default.
- W1981509416 magId "1981509416" @default.
- W1981509416 workType "article" @default.