Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981569342> ?p ?o ?g. }
- W1981569342 endingPage "260" @default.
- W1981569342 startingPage "247" @default.
- W1981569342 abstract "Abstract Appropriate outflow from a barrage should be maintained to avoid flooding on the downstream side during the rainy season. Due to the nonlinear and fuzzy behaviour of hydrological processes, and in cases of scarcity of relevant data, it is difficult to simulate the desired outflow using physically-based models. Artificial intelligence techniques, namely artificial neural networks (ANN) and an adaptive neuro-fuzzy inference system (ANFIS), were used in the reported study to estimate the flow at the downstream stretch of a river using flow data for upstream locations. Comparison of the performance of ANN and ANFIS was made by estimating daily outflow from a barrage located in the downstream region of Mahanadi River basin, India, using daily release data from the Hirakud Reservoir, located some distance upstream of the barrage. To obtain the best input—output mapping, five different models with various input combinations were evaluated using both techniques. The significance of the contribution of two upstream tributaries to barrage outflow estimation was also evaluated. Three feed-forward back-propagation training algorithms were used to train the models. Standard performance indices, such as correlation coefficient, index of agreement, root mean square error, modelling efficiency and percentage deviation in peak flow, were used to compare the performance of the models, as well as the training techniques. The results revealed that the neural network with conjugate gradient algorithm performs better than Levenberg-Marquardt and gradient descent algorithms. The model which considers as input the reservoir release up to three antecedent time steps produced the best results. It was found that barrage outflow could be better estimated by the ANFIS than by the ANN technique." @default.
- W1981569342 created "2016-06-24" @default.
- W1981569342 creator A5041244051 @default.
- W1981569342 creator A5072703440 @default.
- W1981569342 date "2009-04-01" @default.
- W1981569342 modified "2023-10-14" @default.
- W1981569342 title "Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction" @default.
- W1981569342 cites W122552260 @default.
- W1981569342 cites W1593377730 @default.
- W1981569342 cites W1967386919 @default.
- W1981569342 cites W1973676661 @default.
- W1981569342 cites W1980597395 @default.
- W1981569342 cites W1986656491 @default.
- W1981569342 cites W1994424196 @default.
- W1981569342 cites W1995266473 @default.
- W1981569342 cites W1997453817 @default.
- W1981569342 cites W2001759713 @default.
- W1981569342 cites W2008090122 @default.
- W1981569342 cites W2009203913 @default.
- W1981569342 cites W2010551882 @default.
- W1981569342 cites W2018790612 @default.
- W1981569342 cites W2019451733 @default.
- W1981569342 cites W2024520223 @default.
- W1981569342 cites W2029732391 @default.
- W1981569342 cites W2049413683 @default.
- W1981569342 cites W2074770406 @default.
- W1981569342 cites W2094331444 @default.
- W1981569342 cites W2111057504 @default.
- W1981569342 cites W2112435054 @default.
- W1981569342 cites W2118577011 @default.
- W1981569342 cites W2172147742 @default.
- W1981569342 cites W3017323153 @default.
- W1981569342 cites W3018770027 @default.
- W1981569342 cites W2333160181 @default.
- W1981569342 doi "https://doi.org/10.1623/hysj.54.2.247" @default.
- W1981569342 hasPublicationYear "2009" @default.
- W1981569342 type Work @default.
- W1981569342 sameAs 1981569342 @default.
- W1981569342 citedByCount "108" @default.
- W1981569342 countsByYear W19815693422012 @default.
- W1981569342 countsByYear W19815693422013 @default.
- W1981569342 countsByYear W19815693422014 @default.
- W1981569342 countsByYear W19815693422015 @default.
- W1981569342 countsByYear W19815693422016 @default.
- W1981569342 countsByYear W19815693422017 @default.
- W1981569342 countsByYear W19815693422018 @default.
- W1981569342 countsByYear W19815693422019 @default.
- W1981569342 countsByYear W19815693422020 @default.
- W1981569342 countsByYear W19815693422021 @default.
- W1981569342 countsByYear W19815693422022 @default.
- W1981569342 countsByYear W19815693422023 @default.
- W1981569342 crossrefType "journal-article" @default.
- W1981569342 hasAuthorship W1981569342A5041244051 @default.
- W1981569342 hasAuthorship W1981569342A5072703440 @default.
- W1981569342 hasBestOaLocation W19815693421 @default.
- W1981569342 hasConcept C105795698 @default.
- W1981569342 hasConcept C119857082 @default.
- W1981569342 hasConcept C127413603 @default.
- W1981569342 hasConcept C139945424 @default.
- W1981569342 hasConcept C153294291 @default.
- W1981569342 hasConcept C154945302 @default.
- W1981569342 hasConcept C186108316 @default.
- W1981569342 hasConcept C187320778 @default.
- W1981569342 hasConcept C195975749 @default.
- W1981569342 hasConcept C205649164 @default.
- W1981569342 hasConcept C2779276979 @default.
- W1981569342 hasConcept C2780092901 @default.
- W1981569342 hasConcept C33923547 @default.
- W1981569342 hasConcept C39432304 @default.
- W1981569342 hasConcept C41008148 @default.
- W1981569342 hasConcept C50644808 @default.
- W1981569342 hasConcept C58166 @default.
- W1981569342 hasConcept C58640448 @default.
- W1981569342 hasConcept C76886044 @default.
- W1981569342 hasConcept C86132830 @default.
- W1981569342 hasConceptScore W1981569342C105795698 @default.
- W1981569342 hasConceptScore W1981569342C119857082 @default.
- W1981569342 hasConceptScore W1981569342C127413603 @default.
- W1981569342 hasConceptScore W1981569342C139945424 @default.
- W1981569342 hasConceptScore W1981569342C153294291 @default.
- W1981569342 hasConceptScore W1981569342C154945302 @default.
- W1981569342 hasConceptScore W1981569342C186108316 @default.
- W1981569342 hasConceptScore W1981569342C187320778 @default.
- W1981569342 hasConceptScore W1981569342C195975749 @default.
- W1981569342 hasConceptScore W1981569342C205649164 @default.
- W1981569342 hasConceptScore W1981569342C2779276979 @default.
- W1981569342 hasConceptScore W1981569342C2780092901 @default.
- W1981569342 hasConceptScore W1981569342C33923547 @default.
- W1981569342 hasConceptScore W1981569342C39432304 @default.
- W1981569342 hasConceptScore W1981569342C41008148 @default.
- W1981569342 hasConceptScore W1981569342C50644808 @default.
- W1981569342 hasConceptScore W1981569342C58166 @default.
- W1981569342 hasConceptScore W1981569342C58640448 @default.
- W1981569342 hasConceptScore W1981569342C76886044 @default.
- W1981569342 hasConceptScore W1981569342C86132830 @default.
- W1981569342 hasIssue "2" @default.
- W1981569342 hasLocation W19815693421 @default.
- W1981569342 hasOpenAccess W1981569342 @default.