Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981784429> ?p ?o ?g. }
- W1981784429 abstract "Many big data applications give rise to distributional data wherein objects or individuals are naturally represented as K-tuples of bags of feature values where feature values in each bag are sampled from a feature and object specific distribution. We formulate and solve the problem of learning classifiers from distributional data. We consider three classes of methods for learning distributional classifiers: (i) those that rely on aggregation to encode distributional data into tuples of attribute values, i.e., instances that can be handled by traditional supervised machine learning algorithms, (ii) those that are based on generative models of distributional data, and (iii) the discriminative counterparts of the generative models considered in (ii) above. We compare the performance of the different algorithms on real-world as well as synthetic distributional data sets. The results of our experiments demonstrate that classifiers that take advantage of the information available in the distributional instance representation outperform or match the performance of those that fail to fully exploit such information." @default.
- W1981784429 created "2016-06-24" @default.
- W1981784429 creator A5000179187 @default.
- W1981784429 creator A5004306097 @default.
- W1981784429 creator A5004737962 @default.
- W1981784429 creator A5014657402 @default.
- W1981784429 date "2013-06-01" @default.
- W1981784429 modified "2023-09-30" @default.
- W1981784429 title "Learning Classifiers from Distributional Data" @default.
- W1981784429 cites W147601310 @default.
- W1981784429 cites W1503398984 @default.
- W1981784429 cites W1506806321 @default.
- W1981784429 cites W1550206324 @default.
- W1981784429 cites W1585529040 @default.
- W1981784429 cites W1663973292 @default.
- W1981784429 cites W172410088 @default.
- W1981784429 cites W173906397 @default.
- W1981784429 cites W1880262756 @default.
- W1981784429 cites W190008395 @default.
- W1981784429 cites W2068396506 @default.
- W1981784429 cites W2069429561 @default.
- W1981784429 cites W2073792299 @default.
- W1981784429 cites W2096451472 @default.
- W1981784429 cites W2098062695 @default.
- W1981784429 cites W2110119381 @default.
- W1981784429 cites W2118585731 @default.
- W1981784429 cites W2135631383 @default.
- W1981784429 cites W2135863341 @default.
- W1981784429 cites W2151531457 @default.
- W1981784429 cites W2164179075 @default.
- W1981784429 cites W2165636119 @default.
- W1981784429 cites W2166473218 @default.
- W1981784429 cites W2174706414 @default.
- W1981784429 cites W2231077521 @default.
- W1981784429 cites W2406185338 @default.
- W1981784429 cites W2406808456 @default.
- W1981784429 cites W2952400611 @default.
- W1981784429 doi "https://doi.org/10.1109/bigdata.congress.2013.47" @default.
- W1981784429 hasPublicationYear "2013" @default.
- W1981784429 type Work @default.
- W1981784429 sameAs 1981784429 @default.
- W1981784429 citedByCount "3" @default.
- W1981784429 countsByYear W19817844292015 @default.
- W1981784429 countsByYear W19817844292018 @default.
- W1981784429 crossrefType "proceedings-article" @default.
- W1981784429 hasAuthorship W1981784429A5000179187 @default.
- W1981784429 hasAuthorship W1981784429A5004306097 @default.
- W1981784429 hasAuthorship W1981784429A5004737962 @default.
- W1981784429 hasAuthorship W1981784429A5014657402 @default.
- W1981784429 hasConcept C104317684 @default.
- W1981784429 hasConcept C106135958 @default.
- W1981784429 hasConcept C118615104 @default.
- W1981784429 hasConcept C118930307 @default.
- W1981784429 hasConcept C119857082 @default.
- W1981784429 hasConcept C12267149 @default.
- W1981784429 hasConcept C124101348 @default.
- W1981784429 hasConcept C138885662 @default.
- W1981784429 hasConcept C153180895 @default.
- W1981784429 hasConcept C154945302 @default.
- W1981784429 hasConcept C165696696 @default.
- W1981784429 hasConcept C167966045 @default.
- W1981784429 hasConcept C17744445 @default.
- W1981784429 hasConcept C185592680 @default.
- W1981784429 hasConcept C199539241 @default.
- W1981784429 hasConcept C2776359362 @default.
- W1981784429 hasConcept C2776401178 @default.
- W1981784429 hasConcept C2781238097 @default.
- W1981784429 hasConcept C33923547 @default.
- W1981784429 hasConcept C38652104 @default.
- W1981784429 hasConcept C39890363 @default.
- W1981784429 hasConcept C41008148 @default.
- W1981784429 hasConcept C41895202 @default.
- W1981784429 hasConcept C55493867 @default.
- W1981784429 hasConcept C59404180 @default.
- W1981784429 hasConcept C66746571 @default.
- W1981784429 hasConcept C75684735 @default.
- W1981784429 hasConcept C94625758 @default.
- W1981784429 hasConcept C97931131 @default.
- W1981784429 hasConceptScore W1981784429C104317684 @default.
- W1981784429 hasConceptScore W1981784429C106135958 @default.
- W1981784429 hasConceptScore W1981784429C118615104 @default.
- W1981784429 hasConceptScore W1981784429C118930307 @default.
- W1981784429 hasConceptScore W1981784429C119857082 @default.
- W1981784429 hasConceptScore W1981784429C12267149 @default.
- W1981784429 hasConceptScore W1981784429C124101348 @default.
- W1981784429 hasConceptScore W1981784429C138885662 @default.
- W1981784429 hasConceptScore W1981784429C153180895 @default.
- W1981784429 hasConceptScore W1981784429C154945302 @default.
- W1981784429 hasConceptScore W1981784429C165696696 @default.
- W1981784429 hasConceptScore W1981784429C167966045 @default.
- W1981784429 hasConceptScore W1981784429C17744445 @default.
- W1981784429 hasConceptScore W1981784429C185592680 @default.
- W1981784429 hasConceptScore W1981784429C199539241 @default.
- W1981784429 hasConceptScore W1981784429C2776359362 @default.
- W1981784429 hasConceptScore W1981784429C2776401178 @default.
- W1981784429 hasConceptScore W1981784429C2781238097 @default.
- W1981784429 hasConceptScore W1981784429C33923547 @default.
- W1981784429 hasConceptScore W1981784429C38652104 @default.
- W1981784429 hasConceptScore W1981784429C39890363 @default.
- W1981784429 hasConceptScore W1981784429C41008148 @default.