Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981810012> ?p ?o ?g. }
- W1981810012 endingPage "372" @default.
- W1981810012 startingPage "365" @default.
- W1981810012 abstract "Development, Growth & DifferentiationVolume 37, Issue 4 p. 365-372 Free Access Anteroposterior specification in amphibian embryogenesis: The regulative roles of positive and negative controls of mitogenesis Tuneo Yamada, Tuneo Yamada Swiss Institute for Experimental Cancer Research, 1066 Epalinges, Switzerland.Search for more papers by this author Tuneo Yamada, Tuneo Yamada Swiss Institute for Experimental Cancer Research, 1066 Epalinges, Switzerland.Search for more papers by this author First published: August 1995 https://doi.org/10.1046/j.1440-169X.1995.t01-3-00002.xCitations: 3AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat References Blumberg, B., Wright, C. V. E., De Robertis, E. M., & Cho, K. W. Y. 1991. Organizer-specific genes in Xenopus laevis. Development 103, 193– 209. Bories, D., Raynal. M. C., Solomon, D. H., Darzynkiewicz, Z., & Cayre, Y. E. 1989. Down-regulation of a serine protease, myeloblastin, causes growth arrest and differentiation of promyelocytic leukemia cells. Cell 59. 959– 968. Busa, W. B., & Gimmlich, R. L. 1989. Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediates or a diacylglyercol analog. Devel. Biol. 132, 315– 324. Cho. K. W. Y., Blumberg, B., Steinbeisser, H., & De Robertis, E. M. 1991. Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67, 1111– 1120. Davids, M. 1988. Protein kinase in amphibian ectoderm induced for neural differentiation. Roux's Arch. Devel. Biol. 197, 339– 344. Davids, M., Loppnow, B., Tiedemann, H., & Tiedemann. H. 1987. Neural differentiation of amphibian gastrula ectoderm exposed to phorbol ester. Roux's Arch. Devel. Biol. 196, 137– 140. De Robertis. E. M., Blum, M., Niehrs. C., & Steinbeisser, H. 1992. goosecoid and the organizer. Development 1992 (Suppl.) 167– 171. Downes, P., & Michell, R. 1984. Inositol phospholipid break down as a receptor controlled generator of second messengers. In Molecular Mechanism of Transmembrane Signalling (Eds P. Cohen, and M. D. Houslay) pp. 3– 56 Elsevier, Amsterdam . Durston, A. J., Timmermans, J. P. M., Hage, W. J., Hendriks, H. F. L., de Vries, N. J., Heideveld, M., & Nieuwkoop, P. D. 1989. Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340, 140– 144. Ekblom, P., Thesleff, L., Saxén, L., Mietinen, A., & Timpl, R. 1983. Transferrin as a fetal growth factor: Acquisition of responsiveness related to embryonic induction. Proc. Natl Acad. Sci. USA 80, 2651– 2655. Flickinger, R. A., Myagi, M., Moser, C. R., & Rollins, E. 1967. The relation of DNA synthesis to RNA synthesis in developing frog embryos. Devel. Biol. 15, 414– 431. Gebhardt, D. O. E., & Nieuwkoop, P. D. 1964. The influence of lithium on the competence of the ectoderm in Amblystoma mexicanum. J. Embryol. Exp. Morphol. 12, 317– 331. Ghatpande, S. K., Guttikar, G., Paranjape, S., Mulherkar, L., & Modak, S. P. 1990. Cell population growth in chick blastoderms cultured in vitro. Indian J. Exp. Biol. 28, 526– 530. Ghatpande, S. K., Mulherkar, L., & Modak, S. P. 1991. Cell population growth and area expansion in early chick embryos during normal and abnormal morphogenesis in vitro. Develop. Growth & Differ. 33, 605– 615. Ghatpande, S. K., Mulherkar, L., & Modak, S. P. 1993. Lithium chloride and trypan blue induce abnormal morphogenesis by suppressing cell population growth. Develop. Growth Differ. 35, 409– 420. Goscin, L. P., & Byrnes, J. J. 1982. DNA polymerase: One peptide and two activities. Biochemistry 21, 2513– 2518. Gospodarowicz, D., Neufeld, G., & Schweigerer, L. 1986. Fibroblast growth factor. Mol. Cell. Endocrinol. 46, 187– 204. Grigorian, E. N., Mal'cherskaya, I. E., Mitashov, V. I., Titov, M. I., Rubina, A. Yu. & Vinogradov, V. A. 1987. Stimulation of regeneration of crystalline lens from ventral iris in newts. Soviet J. Devel. Biol. (Ontogeny) 18, 386– 392. Grunz, H. 1968. Experimentelle Untersuchingen über die Kompetenz-Verhältnisse früher Entwicklungsstadien des Amphibien-Ektoderms. Roux's Arch. Devel. Biol. 160, 344– 374. Grunz, H. 1985. Effect of concanavalin A and vegetalizing factor on the outer and inner ectodermal layers of early gastrulae of Xenopus laevis after treatment with cytocalasin B. Cell Diff. 6, 83– 92. Gualandris, L., Rouge, P., & Duprat, A. M. 1985. Target cell surface alycoconjugates and neural induction in an amphibian. J. Embryol. Exp. Morphol. 86, 39– 51. Hall, T. S. 1942. The mode of action of lithium salts in amphibian development. J. Exp. Zool. 89, 1– 33. Ikegami, S., Taguchi, T., & Ohashi, M. 1978. Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-alpha. Nature 275, 458– 459. Isaacs, H. V., Pownall, M. E., & Slack, J. M. W. 1994. eFGF regulates Xbra expression during Xenopus gastrulation. EMBO J. 13, 4469– 4481. Jetten, A. 1984. Modulation of cell growth by retinoids and their possible mechanism of action. Fed. Proc. 43, 134– 139. Joshi, S. S., & Joshi, M. V. 1981. Effect of aflatoxin B1 on early embryonic stages of the chick, Gallus domesticus cultured in vitro. Indian J. Exp. Biol. 29, 11– 15. Joshi, M. V., Shah, V. B., & Modak, S. P. 1990. Isonicotinic acid hydrazide inhibits cell population growth during teratogenesis of chick embryo. Indian J. Exp. Biol. 29, 11– 15. Keller, R. E., & Tibetts, P. 1989. Mediolateral cell intercalation in the dorsal axial mesoderm of Xenopus laevis. Devel. Biol. 131, 539– 549. Kengaku, M., & Okamoto, H. 1993. Basic fibroblast growth factor induces differentiations of neural tube and neural crest lineages of cultured ectoderm cells from Xenopus gastrula. Development 119, 1067– 1078. Knöchel, W. 1992. Activin A induced expression of a fork head related gene in posterior chordamesoderm (notochord) of Xenopus laevis embryos. Mech. Devel. 38, 157– 165. Lamb, T. M., Knecht, A. K., Smith, W. C., et al . 1993. Neural induction by the secreted polypeptide noggin. Science 262, 713– 718. Landschulz, W., Thesleff, I., & Ekblom, P. 1984. A lipophilic iron chelator can replace transferrin as a stimulator of cell proliferation and differentiation. J. Cell Biol. 98, 596– 601. Lehmann, F. E. 1938. Regionale Verschiedenheiten des Organisators von Triton, insbesondere in der vorderen und hinteren Kopfregion nachgewiesen durch phasenspezifischen Erzeugung von Lithium-bedingten und operativ bewirkten Regionaldefekten. Roux's Arch. Entwicklungsmech. Organ. 138, 106– 158. McMaster, G., & Modak, S. P. 1977. Cellular and biochemical parameters of growth of chick blastoderm during early morphogenesis. Differentiation 8, 145– 152. Maleyvar, R. P., & Lowery, R. 1973. The pattern of mitosis and DNA synthesis in the presumptive neuroectoderm of Xenopus laevis (Daudin). In The Cell Cycle in Development and Differentiation (Eds M. Balls, and F. S. Billett), pp. 249– 255. Cambridge University Press, Cambridge . Masui, Y. 1958. Effect of lithium upon development of the head of amphibian embryo. Japanese J. Exp. Morphol. 13, 33– 53. Masui, Y. 1960. Differentiation of the prechordal tissue under the influence of lithium chloride. Mem. Konan University. Science Series No. 4, 65– 78. Masui, Y. 1961. Mesodermal differentiation of the presumptive ectoderm of Triturus-gastrula through influence of lithium jon. Experientia 17, 458– 459. Mikhailov, A. T., & Gorgolyuk, N. A. 1988. Concanavalin induces neural tissue and cartilage in amphibian early gastrula ectoderm. Cell Diff. 22, 145– 153. Mikhailov, A. T., Gorgolyuk, N. A., & Biboka, A. D. 1989. Neuralization of ectodermal explants of early gastrula of Rana temporaria under the influence of various mitogens and of kainic acid. Ontogenese 20, 507– 517. Modak, S. P., Ghatpande. S. K., Rane, R. K., & Mulherkar, L. 1993. Caudalization by retinoic acid is correlated with inhibition of cell population growth and expansion of chick blastoderms cultured in vitro. Int. J. Develop. Biol. 37, 601– 607. Moriya, N., Uchiyama, H., & Asashima, M. 1993. Induction of pronephric tubules by activin and retinoic acid in presumptive ectoderm of Xenopus laevis. Develop. Growth Differ. 35, 123– 128. Nicolet, G. 1965. Action du chlorure de lithium sur la morphogenèse du jeune embryon de poule. Acta Embryol. Morphol. Exp. 8, 32– 85. Nieuwkoop, P. D., & Albers, B. 1990. The role of competence in the cranio-caudal segregation of the central nervous system. Develop. Growth Differ. 32, 23– 31. Nishimune, Y., Kume, A., Ogiso. Y., & Matushiro. A. 1983. Induction of teratocarcinoma cell differentiation. Effects of the inhibitor of DNA synthesis. Exp. Cell Res. 146, 439– 444. Nishizuka, Y. 1986. Studies and prospectives of protein linase C. Science 233, 305– 312. Ogi, K. 1961. Vegetalization of the presumptive ectoderm of Triturus gastrula by exposure to lithium chloride solution. Embryologia 5, 384– 396. Otte, A. P., Koster, C. H., Snoek, G. T., & Durston, A. J. 1988. Protein kinase C mediates neural induction in Xenopus laevis. Nature 334, 618– 620. Otte, A. P., VanRan, P., Heideveld, M., van Driel. R., & Durston, A. J. 1989. Neural induction is mediated by cross talk between the protein kinase C and cyclic AMP pathways. Cell 58, 641– 648. Otte, A. P., Kramer, I. M., Mannesse, M., Lambrechts, C., & Durston, A. J. 1990. Characterization of protein kinase C in early Xenopus embryogenesis. Development 110, 461– 470. Otte, A. P., Kramer, I. M., & Durston, A. J. 1991. Protein kinase C and regulation of the local competence of Xenopus ectoderm. Science 251, 570– 573. Partanen, A. M., & Thesleff, I. 1987a. Levels and patterns of 125l-labeled transferrin binding in both embryonic teeth and kidneys at various developmental stages. Differentiation 34, 18– 24. Partanen, A. M., & Thesleff, I. 1987b. Transferrin and tooth morphogenesis: Retention of transferrin by mouse embryonic teeth in organ culture. Differentiation 34, 25– 31. Partanen, A. M., Thesleff, I., & Ekblom, P. 1984. Transferrin is required for early tooth morphogenesis. Differentiation 27, 59– 66. Pietsch, P. 1987. The effects of retinoic acid on mitosis during tail and limb regeneration in the axolotl larva, Amblystoma mexicanum. Roux's Arch. Devel. Biol. 196, 169– 175. Ponzoni, M., & Lanciotti, M. 1990. Retinoic acid decreases phosphatidyl-inositol turn-over during neuroblastoma cell differentiation. J. Neurochem. 54, 540– 546. Represa, J., Sanchez, A., Minrer, C., Lewis, J., & Giraldez, F. 1990. Retinoic acid modulation of the early development of tne inner ear is associated with the control of c-fos expression. Development 110, 1081– 1090. Rollins, M. B., & Andrews, M. T. 1991. Morphogenesis and regulated gene activity are independent of DNA replication in Xenopus embryos. Development 112, 559– 569. Rozengurt, E. 1985. The mitogenic response of cultured 3T3 cells: integration of early signals and synergistic effects in a unified framework. In Molecular Mechanisms of Transmembrane Signalling (Eds P. Cohen, and D. Houslay). pp. 429– 454, Elsevier, Amsterdam . Rosengurt, E., Erusalimsky, J., Mehmet, H., Morris, C., Nanborg, E., & Sinnett-Smith, J. 1988. Signal transduction in mitogenesis: Further evidence for multiple pathways. Cold Springer Symposia on Quantitative Biology 53, 945– 954. Ruiz i Altaba, A., & Melton, D. A. 1989a. Involvement of the Xenopus homeobox gene Xhox-e during embryonic development. Cell 57, 317– 329. Ruiz i Altaba, A., & Melton, D. A. 1989b. Bimodal and graded expression of the Xenopus homeobox gene Xhox-3 during embryonic development. Development 106, 173– 183. Ruiz i Altaba, A., & Jessell. T. M. 1991a. Retinoic acid modifies mesodermal patterning in the early Xenopus embryos. Genes Dev. 5, 175– 187. Ruiz i Altaba, A., & Jessell, T. M. 1991b. Retinoic acid modifies the patterning of cell differentiation in the central nervous system of neurula stage Xenopus embryos. Development 112, 945– 958. Ruiz i Altaba, A., Choi, T., & Melton, D. A. 1992. Expression of the Xhox 3 homeobox protein in Xenopus embryos. Blocking its early function suggests the requirement of Xhox-3 for normal posterior development of the neural axis. Develop. Growth Differ. 33, 651– 660. Ruiz i Altaba, A., & Jessell, T. M. 1992. Pintallavis, gene expressed in the organizer and mid-line cells of frog embryos: Involvement in the development of the neural axis. Development 116, 81– 93. Salish, K., Ghatpande, S. K., Mulherker, L., & Modak. S. 1991. Cell population growth and area expansion in early chick embryo during normal and abnormal morphogenesis in vitro. Develop. Growth Differ. 33, 605– 615. Schweigerer, L., Neufeld, G., & Gospodarwicz, D. 1987. Basic fibroblast growth factor as a growth inhibitor for cultured human tumor cells. J. Clin. Invest. 80, 1516– 1520. Sidell, N., Altman, A., Hausler, M., & Seger, R. 1983. Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Exp. Cell Res. 148, 932– 942. Sive, H. L., Draper, B. W., Harland, R. M., & Weintraub, H. 1990. Identification of a retinoic acid sensitive period during primary axis formation in Xenopus laevis. Genes Dev. 4, 932– 942. Slack, J. M. W., Darlington, B. G., Heath, J. K., & Godsave, S. F. 1987. Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 326, 197– 200. Slack, J. M. W., Isaacs, H. V., & Darlington, B. G. 1988. Inductive effects of fibroblast growth factor and lithium ion on Xenopus blastula ectoderm. Development 103, 581– 590. Smith, W. C., & Harland, J. E. 1992. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70, 829– 840. Smith, W. C., Knecht, A. K., Wu, M., & Harland, R. M. 1993. Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Nature 361, 547– 517. Tacke, L., & Grunz, H. 1986. Electron microscopic study of Con A-gold to superficial and inner layer of Xenopus laevis gastrula ectoderm and its relation to the neural-inducing activity of this lectin. Roux's Arch. Devel. Biol. 195, 158– 167. Taira, M., Jamrich, M., Good, P. J., & David, I. B. 1992. The LIM domain-containing homeobox gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev. 6, 356– 366. Tiedemann, H., Grunz. H., Loppnow-Blinde, R., & Tiedemann, H. 1994. Basic fibroblast growth factor can induce exclusively neural tissue in Triturus ectoderm explants. Roux's Arch. Devel. Biol. 203, 304– 309. Vogt, W. 1929. Gestaltungsanalyse am Amphibienkeimen mit örtlicher Vitalfärbung. II. Gastrulation und Mesodermbildung bei Urodelen und Anuren. Roux's Arch. Entwicklungsmech. Organ. 120, 381– 706. von Dassow, G., Schmidt, J. E., & Kimelman, D. 1993. Induction of the Xenopus organizer: Expression and regulation of Xnot, a novel FGF and activin-regulated homeobox gene. Genes Dev. 7, 355– 366. Wilson, P., & Keller, R. E. 1991. Cell rearrangement during gastrulation of Xenopus: Direct observaton of cultured explants. Development 112, 289– 300. Witta, S. E., Agarwal, V. R., & Sato, S. M. 1995. XIPOU 2, a noggin-inducible gene, has direct neutralizing activity. Development 121, 721– 730. Yamada, T. 1937. Der Determinationszustand des Rumpfmesoderms im Molchkeim nach der Gastrulation. Roux's Arch. Entwicklungsmech. Organ. 137, 151– 270. Yamada, T. 1939. Über bedeutungsfremde Selbstdifferenzierung der präsumptiven Rückenmuskulatur des Molchkeimes bei Isolation. Folia Anatomica Japonica 18, 565– 568. Yamada, T. 1940. Beeinflussung der Differenzierungsleistung des isolierten Mesoderms durch zugefügtes Chorda- und Neural-material. Folia Anatomica Japonica 19, 131– 197. Yamada, T. 1950a. Dorsalization of the ventral marginal zone of the gastrula. I. Ammonia-treatment of the medio-ventral marginal zone. Biol, Bull. 98, 98– 121. Yamada, T. 1950b. Regional differentiation of the isolated ectoderm of Triturus gastrula induced through a protein extract. Embrologia 1, 1– 20. Yamada, T. 1989. Cell type expression mediated by cell cycle events, and signaled by mitogen and growth inhibitors. Int. Rev. Cytol. 117, 215– 255. Yamada, T. 1990. Regulations in the induction of the organized neural system in amphibian embryos. Development 110, 653– 659. Yamada, T. 1994. Caudalization by the amphibian organizer: Brachyury, convergent extension and retinoic acid. Development 120, 3051– 3062. Yamada, T., & Takata, K. 1961. A technique for testing macromolecular samples in solution for morphogenetic effects on the isolated ectoderm of the amphibian gastrula. Devel. Biol. 3, 411– 423. Yamazaki-Yamamoto, K., Ozawa. R., Takata, K., & Kitoh, J. 1981. Cell surface changes of the presumptive ectoderm following neural-inducing treatment by Concanavalin A. Roux's Arch. Devel. Biol. 190, 313– 319. Citing Literature Volume37, Issue4August 1995Pages 365-372 ReferencesRelatedInformation" @default.
- W1981810012 created "2016-06-24" @default.
- W1981810012 creator A5047212903 @default.
- W1981810012 date "1995-08-01" @default.
- W1981810012 modified "2023-10-16" @default.
- W1981810012 title "Anteroposterior specification in amphibian embryogenesis: The regulative roles of positive and negative controls of mitogenesis" @default.
- W1981810012 cites W1463193401 @default.
- W1981810012 cites W1529310741 @default.
- W1981810012 cites W1538637788 @default.
- W1981810012 cites W1545168221 @default.
- W1981810012 cites W1570234864 @default.
- W1981810012 cites W1588404026 @default.
- W1981810012 cites W1707782119 @default.
- W1981810012 cites W1767966520 @default.
- W1981810012 cites W1769901379 @default.
- W1981810012 cites W1860007525 @default.
- W1981810012 cites W1890638622 @default.
- W1981810012 cites W1943352952 @default.
- W1981810012 cites W1964839077 @default.
- W1981810012 cites W1965262670 @default.
- W1981810012 cites W1970057370 @default.
- W1981810012 cites W1972435216 @default.
- W1981810012 cites W1973921994 @default.
- W1981810012 cites W1976029914 @default.
- W1981810012 cites W1978186065 @default.
- W1981810012 cites W1982490610 @default.
- W1981810012 cites W1983664532 @default.
- W1981810012 cites W1985084515 @default.
- W1981810012 cites W1986829532 @default.
- W1981810012 cites W1990938412 @default.
- W1981810012 cites W2002188458 @default.
- W1981810012 cites W2005660376 @default.
- W1981810012 cites W2006303534 @default.
- W1981810012 cites W2008179424 @default.
- W1981810012 cites W2010324872 @default.
- W1981810012 cites W2020744649 @default.
- W1981810012 cites W2023772121 @default.
- W1981810012 cites W2024279589 @default.
- W1981810012 cites W2024823500 @default.
- W1981810012 cites W2035664221 @default.
- W1981810012 cites W2039636049 @default.
- W1981810012 cites W2047165320 @default.
- W1981810012 cites W2052252813 @default.
- W1981810012 cites W2053093350 @default.
- W1981810012 cites W2055868652 @default.
- W1981810012 cites W2058137328 @default.
- W1981810012 cites W2066171570 @default.
- W1981810012 cites W2067513896 @default.
- W1981810012 cites W2069797517 @default.
- W1981810012 cites W2071135527 @default.
- W1981810012 cites W2073320971 @default.
- W1981810012 cites W2074794606 @default.
- W1981810012 cites W2074806929 @default.
- W1981810012 cites W2077214336 @default.
- W1981810012 cites W2088249657 @default.
- W1981810012 cites W2091630371 @default.
- W1981810012 cites W2099072433 @default.
- W1981810012 cites W2109975077 @default.
- W1981810012 cites W2113460448 @default.
- W1981810012 cites W2115690188 @default.
- W1981810012 cites W2116026731 @default.
- W1981810012 cites W2129648375 @default.
- W1981810012 cites W2130938952 @default.
- W1981810012 cites W2144239810 @default.
- W1981810012 cites W2145741774 @default.
- W1981810012 cites W2164910878 @default.
- W1981810012 cites W2165080402 @default.
- W1981810012 cites W2165200226 @default.
- W1981810012 cites W2169149931 @default.
- W1981810012 cites W2182264008 @default.
- W1981810012 cites W2185323783 @default.
- W1981810012 cites W2324553772 @default.
- W1981810012 cites W2346682411 @default.
- W1981810012 cites W2396483671 @default.
- W1981810012 cites W2411004123 @default.
- W1981810012 cites W2413753310 @default.
- W1981810012 cites W2415453530 @default.
- W1981810012 cites W2417381833 @default.
- W1981810012 cites W2418933801 @default.
- W1981810012 cites W3182669524 @default.
- W1981810012 cites W4211208200 @default.
- W1981810012 cites W90858298 @default.
- W1981810012 cites W999217034 @default.
- W1981810012 doi "https://doi.org/10.1046/j.1440-169x.1995.t01-3-00002.x" @default.
- W1981810012 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37281014" @default.
- W1981810012 hasPublicationYear "1995" @default.
- W1981810012 type Work @default.
- W1981810012 sameAs 1981810012 @default.
- W1981810012 citedByCount "5" @default.
- W1981810012 crossrefType "journal-article" @default.
- W1981810012 hasAuthorship W1981810012A5047212903 @default.
- W1981810012 hasBestOaLocation W19818100121 @default.
- W1981810012 hasConcept C105702510 @default.
- W1981810012 hasConcept C18903297 @default.
- W1981810012 hasConcept C196843134 @default.
- W1981810012 hasConcept C2781465898 @default.
- W1981810012 hasConcept C78458016 @default.
- W1981810012 hasConcept C86803240 @default.