Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981892783> ?p ?o ?g. }
- W1981892783 endingPage "737" @default.
- W1981892783 startingPage "731" @default.
- W1981892783 abstract "Upon mating, regions of the female reproductive tract mature and alter their function [1Heifetz Y. Rivlin P.K. Beyond the mouse model: using Drosophila as a model for sperm interaction with the female reproductive tract.Theriogenology. 2010; 73: 723-739Abstract Full Text Full Text PDF PubMed Scopus (43) Google Scholar, 2Kapelnikov A. Rivlin P.K. Hoy R.R. Heifetz Y. Tissue remodeling: a mating-induced differentiation program for the Drosophila oviduct.BMC Dev. Biol. 2008; 8: 114Crossref PubMed Scopus (35) Google Scholar, 3Kapelnikov A. Zelinger E. Gottlieb Y. Rhrissorrakrai K. Gunsalus K.C. Heifetz Y. Mating induces an immune response and developmental switch in the Drosophila oviduct.Proc. Natl. Acad. Sci. USA. 2008; 105: 13912-13917Crossref PubMed Scopus (67) Google Scholar], for example to facilitate storage of sperm or control the release of eggs [4Adams E.M. Wolfner M.F. Seminal proteins but not sperm induce morphological changes in the Drosophila melanogaster female reproductive tract during sperm storage.J. Insect Physiol. 2007; 53: 319-331Crossref PubMed Scopus (91) Google Scholar, 5Avila F.W. Wolfner M.F. Acp36DE is required for uterine conformational changes in mated Drosophila females.Proc. Natl. Acad. Sci. USA. 2009; 106: 15796-15800Crossref PubMed Scopus (87) Google Scholar, 6Drummond-Barbosa D. Spradling A.C. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis.Dev. Biol. 2001; 231: 265-278Crossref PubMed Scopus (447) Google Scholar]. The female’s nervous system and neuromodulators play important roles in her responses to mating [7Rubinstein C.D. Wolfner M.F. Drosophila seminal protein ovulin mediates ovulation through female octopamine neuronal signaling.Proc. Natl. Acad. Sci. USA. 2013; 110: 17420-17425Crossref PubMed Scopus (95) Google Scholar, 8Heifetz Y. Wolfner M.F. Mating, seminal fluid components, and sperm cause changes in vesicle release in the Drosophila female reproductive tract.Proc. Natl. Acad. Sci. USA. 2004; 101: 6261-6266Crossref PubMed Scopus (77) Google Scholar, 9Arthur Jr., B.I. Hauschteck-Jungen E. Nöthiger R. Ward P.I. A female nervous system is necessary for normal sperm storage in Drosophila melanogaster: a masculinized nervous system is as good as none.Proc. Biol. Sci. 1998; 265: 1749-1753Crossref Scopus (52) Google Scholar, 10Chow C.Y. Wolfner M.F. Clark A.G. Large neurological component to genetic differences underlying biased sperm use in Drosophila.Genetics. 2013; 193: 177-185Crossref PubMed Scopus (33) Google Scholar, 11Häsemeyer M. Yapici N. Heberlein U. Dickson B.J. Sensory neurons in the Drosophila genital tract regulate female reproductive behavior.Neuron. 2009; 61: 511-518Abstract Full Text Full Text PDF PubMed Scopus (199) Google Scholar, 12Rezával C. Pavlou H.J. Dornan A.J. Chan Y.B. Kravitz E.A. Goodwin S.F. Neural circuitry underlying Drosophila female postmating behavioral responses.Curr. Biol. 2012; 22: 1155-1165Abstract Full Text Full Text PDF PubMed Scopus (143) Google Scholar, 13Yang C.H. Rumpf S. Xiang Y. Gordon M.D. Song W. Jan L.Y. Jan Y.N. Control of the postmating behavioral switch in Drosophila females by internal sensory neurons.Neuron. 2009; 61: 519-526Abstract Full Text Full Text PDF PubMed Scopus (214) Google Scholar]. However, it is difficult to reconcile the reproductive tract’s many changing but coordinated events with the small set of neuromodulators present [14Cole S.H. Carney G.E. McClung C.A. Willard S.S. Taylor B.J. Hirsh J. Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility.J. Biol. Chem. 2005; 280: 14948-14955Crossref PubMed Scopus (241) Google Scholar, 15Lange A.B. Loughton B.G. An oviposition-stimulating factor in the male accessory reproductive gland of the locust, Locusta migratoria.Gen. Comp. Endocrinol. 1985; 57: 208-215Crossref PubMed Scopus (46) Google Scholar, 16Lee H.G. Rohila S. Han K.A. The octopamine receptor OAMB mediates ovulation via Ca2+/calmodulin-dependent protein kinase II in the Drosophila oviduct epithelium.PLoS ONE. 2009; 4: e4716Crossref PubMed Scopus (50) Google Scholar, 17Lee H.G. Seong C.S. Kim Y.C. Davis R.L. Han K.A. Octopamine receptor OAMB is required for ovulation in Drosophila melanogaster.Dev. Biol. 2003; 264: 179-190Crossref PubMed Scopus (123) Google Scholar, 18Monastirioti M. Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster.Dev. Biol. 2003; 264: 38-49Crossref PubMed Scopus (148) Google Scholar]. We hypothesized that each part of the reproductive tract contains a characteristic combination of neuromodulators that confer unique identities on each region and that postmating changes in these combinations coordinate subsequent actions. We examined the presence, locations, and levels of neuromodulators and related molecules (“signaling molecules”) in the reproductive tract of Drosophila melanogaster females before and after mating: the biogenic amine octopamine, which regulates ovulation rate in Drosophila and locusts [7Rubinstein C.D. Wolfner M.F. Drosophila seminal protein ovulin mediates ovulation through female octopamine neuronal signaling.Proc. Natl. Acad. Sci. USA. 2013; 110: 17420-17425Crossref PubMed Scopus (95) Google Scholar, 14Cole S.H. Carney G.E. McClung C.A. Willard S.S. Taylor B.J. Hirsh J. Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility.J. Biol. Chem. 2005; 280: 14948-14955Crossref PubMed Scopus (241) Google Scholar, 15Lange A.B. Loughton B.G. An oviposition-stimulating factor in the male accessory reproductive gland of the locust, Locusta migratoria.Gen. Comp. Endocrinol. 1985; 57: 208-215Crossref PubMed Scopus (46) Google Scholar, 16Lee H.G. Rohila S. Han K.A. The octopamine receptor OAMB mediates ovulation via Ca2+/calmodulin-dependent protein kinase II in the Drosophila oviduct epithelium.PLoS ONE. 2009; 4: e4716Crossref PubMed Scopus (50) Google Scholar, 17Lee H.G. Seong C.S. Kim Y.C. Davis R.L. Han K.A. Octopamine receptor OAMB is required for ovulation in Drosophila melanogaster.Dev. Biol. 2003; 264: 179-190Crossref PubMed Scopus (123) Google Scholar, 18Monastirioti M. Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster.Dev. Biol. 2003; 264: 38-49Crossref PubMed Scopus (148) Google Scholar, 19Avila F.W. Sirot L.K. LaFlamme B.A. Rubinstein C.D. Wolfner M.F. Insect seminal fluid proteins: identification and function.Annu. Rev. Entomol. 2011; 56: 21-40Crossref PubMed Scopus (605) Google Scholar, 20Middleton C.A. Nongthomba U. Parry K. Sweeney S.T. Sparrow J.C. Elliott C.J. Neuromuscular organization and aminergic modulation of contractions in the Drosophila ovary.BMC Biol. 2006; 4: 17Crossref PubMed Scopus (94) Google Scholar]; serotonin, which regulates muscle contraction in locust oviducts [21Lange A.B. A neurohormonal role for serotonin in the control of locust oviducts.Arch. Insect Biochem. Physiol. 2004; 56: 179-190Crossref PubMed Scopus (32) Google Scholar]; and the FMRF amide dromyosuppressin, which regulates contraction of Drosophila heart muscle [22Nichols R. Signaling pathways and physiological functions of Drosophila melanogaster FMRFamide-related peptides.Annu. Rev. Entomol. 2003; 48: 485-503Crossref PubMed Scopus (83) Google Scholar] and may regulate muscle contractions in the reproductive tract, if it is expressed there. We find that separate aspects of mating (sperm, seminal proteins, and physical effects) independently modulate the release of signaling molecules. Each reproductive tract subregion displays a characteristic combination of signaling molecule release, resulting in a unique functional identity. These patterns, and thus functions, change reproducibly after mating. Thus, one event (mating) promotes new combinations of signaling molecules that endow different parts of the reproductive tract with unique temporal and spatial identities that facilitate many aspects of fertilization." @default.
- W1981892783 created "2016-06-24" @default.
- W1981892783 creator A5018934353 @default.
- W1981892783 creator A5036793883 @default.
- W1981892783 creator A5073566367 @default.
- W1981892783 creator A5082934579 @default.
- W1981892783 date "2014-03-01" @default.
- W1981892783 modified "2023-10-06" @default.
- W1981892783 title "Mating Regulates Neuromodulator Ensembles at Nerve Termini Innervating the Drosophila Reproductive Tract" @default.
- W1981892783 cites W1964611579 @default.
- W1981892783 cites W1978637766 @default.
- W1981892783 cites W1979000750 @default.
- W1981892783 cites W1992795326 @default.
- W1981892783 cites W1995951931 @default.
- W1981892783 cites W2002190386 @default.
- W1981892783 cites W2008968520 @default.
- W1981892783 cites W2011817945 @default.
- W1981892783 cites W2022298513 @default.
- W1981892783 cites W2023573786 @default.
- W1981892783 cites W2025959352 @default.
- W1981892783 cites W2029605159 @default.
- W1981892783 cites W2031893285 @default.
- W1981892783 cites W2033300068 @default.
- W1981892783 cites W2039528431 @default.
- W1981892783 cites W2039864171 @default.
- W1981892783 cites W2044110967 @default.
- W1981892783 cites W2048080520 @default.
- W1981892783 cites W2051478210 @default.
- W1981892783 cites W2057697250 @default.
- W1981892783 cites W2059583094 @default.
- W1981892783 cites W2091447825 @default.
- W1981892783 cites W2098913542 @default.
- W1981892783 cites W2106313405 @default.
- W1981892783 cites W2113394141 @default.
- W1981892783 cites W2115172054 @default.
- W1981892783 cites W2120293681 @default.
- W1981892783 cites W2123858302 @default.
- W1981892783 cites W2125392438 @default.
- W1981892783 cites W2134505400 @default.
- W1981892783 cites W2137418936 @default.
- W1981892783 cites W2142862838 @default.
- W1981892783 cites W2143590426 @default.
- W1981892783 cites W2149235402 @default.
- W1981892783 cites W2155795262 @default.
- W1981892783 cites W2162967870 @default.
- W1981892783 doi "https://doi.org/10.1016/j.cub.2014.02.042" @default.
- W1981892783 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4020355" @default.
- W1981892783 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24631240" @default.
- W1981892783 hasPublicationYear "2014" @default.
- W1981892783 type Work @default.
- W1981892783 sameAs 1981892783 @default.
- W1981892783 citedByCount "64" @default.
- W1981892783 countsByYear W19818927832014 @default.
- W1981892783 countsByYear W19818927832015 @default.
- W1981892783 countsByYear W19818927832016 @default.
- W1981892783 countsByYear W19818927832017 @default.
- W1981892783 countsByYear W19818927832018 @default.
- W1981892783 countsByYear W19818927832019 @default.
- W1981892783 countsByYear W19818927832020 @default.
- W1981892783 countsByYear W19818927832021 @default.
- W1981892783 countsByYear W19818927832022 @default.
- W1981892783 countsByYear W19818927832023 @default.
- W1981892783 crossrefType "journal-article" @default.
- W1981892783 hasAuthorship W1981892783A5018934353 @default.
- W1981892783 hasAuthorship W1981892783A5036793883 @default.
- W1981892783 hasAuthorship W1981892783A5073566367 @default.
- W1981892783 hasAuthorship W1981892783A5082934579 @default.
- W1981892783 hasBestOaLocation W19818927831 @default.
- W1981892783 hasConcept C104317684 @default.
- W1981892783 hasConcept C105702510 @default.
- W1981892783 hasConcept C134018914 @default.
- W1981892783 hasConcept C169760540 @default.
- W1981892783 hasConcept C2776041557 @default.
- W1981892783 hasConcept C2992003382 @default.
- W1981892783 hasConcept C514575182 @default.
- W1981892783 hasConcept C54355233 @default.
- W1981892783 hasConcept C78458016 @default.
- W1981892783 hasConcept C86803240 @default.
- W1981892783 hasConcept C90856448 @default.
- W1981892783 hasConcept C95444343 @default.
- W1981892783 hasConceptScore W1981892783C104317684 @default.
- W1981892783 hasConceptScore W1981892783C105702510 @default.
- W1981892783 hasConceptScore W1981892783C134018914 @default.
- W1981892783 hasConceptScore W1981892783C169760540 @default.
- W1981892783 hasConceptScore W1981892783C2776041557 @default.
- W1981892783 hasConceptScore W1981892783C2992003382 @default.
- W1981892783 hasConceptScore W1981892783C514575182 @default.
- W1981892783 hasConceptScore W1981892783C54355233 @default.
- W1981892783 hasConceptScore W1981892783C78458016 @default.
- W1981892783 hasConceptScore W1981892783C86803240 @default.
- W1981892783 hasConceptScore W1981892783C90856448 @default.
- W1981892783 hasConceptScore W1981892783C95444343 @default.
- W1981892783 hasIssue "7" @default.
- W1981892783 hasLocation W19818927831 @default.
- W1981892783 hasLocation W19818927832 @default.
- W1981892783 hasLocation W19818927833 @default.
- W1981892783 hasLocation W19818927834 @default.
- W1981892783 hasOpenAccess W1981892783 @default.