Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981916955> ?p ?o ?g. }
- W1981916955 endingPage "1162" @default.
- W1981916955 startingPage "1159" @default.
- W1981916955 abstract "Cholesterol-mediated lipid interactions, such as nanodomain formation, are considered vital in a cell, but because of the lack of suitable detection techniques, their spatiotemporal range remained highly controversial. Here, Eggeling et al. use subdiffraction-resolution STED (stimulated emission depletion) fluorescence microscopy to detect the diffusion of single lipids or glycosylphosphatidylinositol (GPI)-anchored proteins on the plasma membrane of a living cell. Tuning the probing spot area up to about 70-fold below that of a confocal microscope reveals that unlike phosphoglycerolipids, sphingolipids and GPI-anchored proteins are trapped for about 10 ms in cholesterol-mediated complexes within less than 20 nm space. Optical probing in nanosized areas is a powerful new approach to study biomolecular function. Here, subdiffraction-resolution STED fluorescence microscopy is used to detect the diffusion of single lipids or GPI-anchored proteins on the plasma membrane of a living cell. Tuning the probing spot area ∼70-fold below that of a confocal microscope reveals that unlike phosphoglycerolipids, sphingolipids and GPI-anchored proteins are trapped for ∼10 ms in cholesterol-mediated complexes within <20 nm space. Cholesterol-mediated lipid interactions are thought to have a functional role in many membrane-associated processes such as signalling events1,2,3,4,5. Although several experiments indicate their existence, lipid nanodomains (‘rafts’) remain controversial owing to the lack of suitable detection techniques in living cells4,6,7,8,9. The controversy is reflected in their putative size of 5–200 nm, spanning the range between the extent of a protein complex and the resolution limit of optical microscopy. Here we demonstrate the ability of stimulated emission depletion (STED) far-field fluorescence nanoscopy10 to detect single diffusing (lipid) molecules in nanosized areas in the plasma membrane of living cells. Tuning of the probed area to spot sizes ∼70-fold below the diffraction barrier reveals that unlike phosphoglycerolipids, sphingolipids and glycosylphosphatidylinositol-anchored proteins are transiently (∼10–20 ms) trapped in cholesterol-mediated molecular complexes dwelling within <20-nm diameter areas. The non-invasive optical recording of molecular time traces and fluctuation data in tunable nanoscale domains is a powerful new approach to study the dynamics of biomolecules in living cells." @default.
- W1981916955 created "2016-06-24" @default.
- W1981916955 creator A5007309669 @default.
- W1981916955 creator A5021945121 @default.
- W1981916955 creator A5043881600 @default.
- W1981916955 creator A5050584525 @default.
- W1981916955 creator A5067171744 @default.
- W1981916955 creator A5070786988 @default.
- W1981916955 creator A5072065214 @default.
- W1981916955 creator A5072799867 @default.
- W1981916955 creator A5079377122 @default.
- W1981916955 creator A5079628267 @default.
- W1981916955 creator A5088219208 @default.
- W1981916955 date "2008-12-21" @default.
- W1981916955 modified "2023-10-10" @default.
- W1981916955 title "Direct observation of the nanoscale dynamics of membrane lipids in a living cell" @default.
- W1981916955 cites W1480235129 @default.
- W1981916955 cites W1965037865 @default.
- W1981916955 cites W1981765336 @default.
- W1981916955 cites W1982051519 @default.
- W1981916955 cites W1987857571 @default.
- W1981916955 cites W1992998103 @default.
- W1981916955 cites W1994442356 @default.
- W1981916955 cites W1996169727 @default.
- W1981916955 cites W2002478108 @default.
- W1981916955 cites W2009556747 @default.
- W1981916955 cites W2014903703 @default.
- W1981916955 cites W2024372419 @default.
- W1981916955 cites W2028983576 @default.
- W1981916955 cites W2055864348 @default.
- W1981916955 cites W2057062200 @default.
- W1981916955 cites W2065886456 @default.
- W1981916955 cites W2068221387 @default.
- W1981916955 cites W2068237765 @default.
- W1981916955 cites W2075201313 @default.
- W1981916955 cites W2091364631 @default.
- W1981916955 cites W2100826597 @default.
- W1981916955 cites W2109648879 @default.
- W1981916955 cites W2114656957 @default.
- W1981916955 cites W2115737236 @default.
- W1981916955 cites W2121936687 @default.
- W1981916955 cites W2129223724 @default.
- W1981916955 cites W2145055214 @default.
- W1981916955 cites W2147688960 @default.
- W1981916955 cites W2158603948 @default.
- W1981916955 cites W2169791141 @default.
- W1981916955 cites W3150248096 @default.
- W1981916955 cites W82875452 @default.
- W1981916955 doi "https://doi.org/10.1038/nature07596" @default.
- W1981916955 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19098897" @default.
- W1981916955 hasPublicationYear "2008" @default.
- W1981916955 type Work @default.
- W1981916955 sameAs 1981916955 @default.
- W1981916955 citedByCount "1358" @default.
- W1981916955 countsByYear W19819169552012 @default.
- W1981916955 countsByYear W19819169552013 @default.
- W1981916955 countsByYear W19819169552014 @default.
- W1981916955 countsByYear W19819169552015 @default.
- W1981916955 countsByYear W19819169552016 @default.
- W1981916955 countsByYear W19819169552017 @default.
- W1981916955 countsByYear W19819169552018 @default.
- W1981916955 countsByYear W19819169552019 @default.
- W1981916955 countsByYear W19819169552020 @default.
- W1981916955 countsByYear W19819169552021 @default.
- W1981916955 countsByYear W19819169552022 @default.
- W1981916955 countsByYear W19819169552023 @default.
- W1981916955 crossrefType "journal-article" @default.
- W1981916955 hasAuthorship W1981916955A5007309669 @default.
- W1981916955 hasAuthorship W1981916955A5021945121 @default.
- W1981916955 hasAuthorship W1981916955A5043881600 @default.
- W1981916955 hasAuthorship W1981916955A5050584525 @default.
- W1981916955 hasAuthorship W1981916955A5067171744 @default.
- W1981916955 hasAuthorship W1981916955A5070786988 @default.
- W1981916955 hasAuthorship W1981916955A5072065214 @default.
- W1981916955 hasAuthorship W1981916955A5072799867 @default.
- W1981916955 hasAuthorship W1981916955A5079377122 @default.
- W1981916955 hasAuthorship W1981916955A5079628267 @default.
- W1981916955 hasAuthorship W1981916955A5088219208 @default.
- W1981916955 hasBestOaLocation W19819169552 @default.
- W1981916955 hasConcept C105780059 @default.
- W1981916955 hasConcept C120665830 @default.
- W1981916955 hasConcept C121332964 @default.
- W1981916955 hasConcept C12554922 @default.
- W1981916955 hasConcept C134088382 @default.
- W1981916955 hasConcept C136009344 @default.
- W1981916955 hasConcept C138268822 @default.
- W1981916955 hasConcept C144618238 @default.
- W1981916955 hasConcept C147080431 @default.
- W1981916955 hasConcept C154945302 @default.
- W1981916955 hasConcept C166936260 @default.
- W1981916955 hasConcept C169274487 @default.
- W1981916955 hasConcept C178790620 @default.
- W1981916955 hasConcept C185592680 @default.
- W1981916955 hasConcept C2778106830 @default.
- W1981916955 hasConcept C2779178360 @default.
- W1981916955 hasConcept C30282128 @default.
- W1981916955 hasConcept C32909587 @default.
- W1981916955 hasConcept C39944091 @default.