Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981943644> ?p ?o ?g. }
- W1981943644 endingPage "5050" @default.
- W1981943644 startingPage "5033" @default.
- W1981943644 abstract "Abstract In this paper, we investigate the use of a continuous algorithm for the no-idle permutation flowshop scheduling (NIPFS) problem with tardiness criterion. For this purpose, a differential evolution algorithm with variable parameter search (vpsDE) is developed to be compared to a well-known random key genetic algorithm (RKGA) from the literature. The motivation is due to the fact that a continuous DE can be very competitive for the problems where RKGAs are well suited. As an application area, we choose the NIPFS problem with the total tardiness criterion in which there is no literature on it to the best of our knowledge. The NIPFS problem is a variant of the well-known permutation flowshop (PFSP) scheduling problem where idle time is not allowed on machines. In other words, the start time of processing the first job on a given machine must be delayed in order to satisfy the no-idle constraint. The paper presents the following contributions. First of all, a continuous optimisation algorithm is used to solve a combinatorial optimisation problem where some efficient methods of converting a continuous vector to a discrete job permutation and vice versa are presented. These methods are not problem specific and can be employed in any continuous algorithm to tackle the permutation type of optimisation problems. Secondly, a variable parameter search is introduced for the differential evolution algorithm which significantly accelerates the search process for global optimisation and enhances the solution quality. Thirdly, some novel ways of calculating the total tardiness from makespan are introduced for the NIPFS problem. The performance of vpsDE is evaluated against a well-known RKGA from the literature. The computational results show its highly competitive performance when compared to RKGA. It is shown in this paper that the vpsDE performs better than the RKGA, thus providing an alternative solution approach to the literature that the RKGA can be well suited. Keywords: the no-idle permutation flowshop scheduling problemdifferential evolution algorithmrandom key genetic algorithmheuristic optimisation Acknowledgements P.N. Suganthan acknowledges the financial support offered by the A*Star (Agency for Science, Technology and Research) under grant 052 101 0020. In addition, this research is partially supported by National Science Foundation of China under grants 60874075, 70871065, and Open Research Foundation from State Key Laboratory of Digital Manufacturing Equipment and Technology (Huazhong University of Science and Technology) and Postdoctoral Science Foundation of China under grants 20070410791." @default.
- W1981943644 created "2016-06-24" @default.
- W1981943644 creator A5007895732 @default.
- W1981943644 creator A5025626208 @default.
- W1981943644 creator A5082315337 @default.
- W1981943644 creator A5089650598 @default.
- W1981943644 date "2011-08-15" @default.
- W1981943644 modified "2023-10-17" @default.
- W1981943644 title "A differential evolution algorithm for the no-idle flowshop scheduling problem with total tardiness criterion" @default.
- W1981943644 cites W1595159159 @default.
- W1981943644 cites W1970320473 @default.
- W1981943644 cites W1972758700 @default.
- W1981943644 cites W1974164030 @default.
- W1981943644 cites W1974172836 @default.
- W1981943644 cites W1979763505 @default.
- W1981943644 cites W1986887124 @default.
- W1981943644 cites W1993433489 @default.
- W1981943644 cites W2001664299 @default.
- W1981943644 cites W2006057826 @default.
- W1981943644 cites W2006751452 @default.
- W1981943644 cites W2009331272 @default.
- W1981943644 cites W2010334716 @default.
- W1981943644 cites W2014484824 @default.
- W1981943644 cites W2015261628 @default.
- W1981943644 cites W2024085737 @default.
- W1981943644 cites W2027090910 @default.
- W1981943644 cites W2030385822 @default.
- W1981943644 cites W2044471227 @default.
- W1981943644 cites W2052516622 @default.
- W1981943644 cites W2054438573 @default.
- W1981943644 cites W2059405252 @default.
- W1981943644 cites W2067949393 @default.
- W1981943644 cites W2070359938 @default.
- W1981943644 cites W2072855174 @default.
- W1981943644 cites W2086945913 @default.
- W1981943644 cites W2088303050 @default.
- W1981943644 cites W2090069860 @default.
- W1981943644 cites W2093559364 @default.
- W1981943644 cites W2102494690 @default.
- W1981943644 cites W2107042745 @default.
- W1981943644 cites W2116853369 @default.
- W1981943644 cites W2125827607 @default.
- W1981943644 cites W2156391157 @default.
- W1981943644 cites W613241997 @default.
- W1981943644 doi "https://doi.org/10.1080/00207543.2010.497781" @default.
- W1981943644 hasPublicationYear "2011" @default.
- W1981943644 type Work @default.
- W1981943644 sameAs 1981943644 @default.
- W1981943644 citedByCount "43" @default.
- W1981943644 countsByYear W19819436442012 @default.
- W1981943644 countsByYear W19819436442013 @default.
- W1981943644 countsByYear W19819436442014 @default.
- W1981943644 countsByYear W19819436442015 @default.
- W1981943644 countsByYear W19819436442016 @default.
- W1981943644 countsByYear W19819436442017 @default.
- W1981943644 countsByYear W19819436442018 @default.
- W1981943644 countsByYear W19819436442019 @default.
- W1981943644 countsByYear W19819436442020 @default.
- W1981943644 countsByYear W19819436442021 @default.
- W1981943644 countsByYear W19819436442022 @default.
- W1981943644 countsByYear W19819436442023 @default.
- W1981943644 crossrefType "journal-article" @default.
- W1981943644 hasAuthorship W1981943644A5007895732 @default.
- W1981943644 hasAuthorship W1981943644A5025626208 @default.
- W1981943644 hasAuthorship W1981943644A5082315337 @default.
- W1981943644 hasAuthorship W1981943644A5089650598 @default.
- W1981943644 hasConcept C109718341 @default.
- W1981943644 hasConcept C111919701 @default.
- W1981943644 hasConcept C11413529 @default.
- W1981943644 hasConcept C121332964 @default.
- W1981943644 hasConcept C126255220 @default.
- W1981943644 hasConcept C158336966 @default.
- W1981943644 hasConcept C206729178 @default.
- W1981943644 hasConcept C21308566 @default.
- W1981943644 hasConcept C24890656 @default.
- W1981943644 hasConcept C2776435737 @default.
- W1981943644 hasConcept C2778047078 @default.
- W1981943644 hasConcept C33923547 @default.
- W1981943644 hasConcept C41008148 @default.
- W1981943644 hasConcept C55416958 @default.
- W1981943644 hasConcept C68387754 @default.
- W1981943644 hasConcept C74750220 @default.
- W1981943644 hasConceptScore W1981943644C109718341 @default.
- W1981943644 hasConceptScore W1981943644C111919701 @default.
- W1981943644 hasConceptScore W1981943644C11413529 @default.
- W1981943644 hasConceptScore W1981943644C121332964 @default.
- W1981943644 hasConceptScore W1981943644C126255220 @default.
- W1981943644 hasConceptScore W1981943644C158336966 @default.
- W1981943644 hasConceptScore W1981943644C206729178 @default.
- W1981943644 hasConceptScore W1981943644C21308566 @default.
- W1981943644 hasConceptScore W1981943644C24890656 @default.
- W1981943644 hasConceptScore W1981943644C2776435737 @default.
- W1981943644 hasConceptScore W1981943644C2778047078 @default.
- W1981943644 hasConceptScore W1981943644C33923547 @default.
- W1981943644 hasConceptScore W1981943644C41008148 @default.
- W1981943644 hasConceptScore W1981943644C55416958 @default.
- W1981943644 hasConceptScore W1981943644C68387754 @default.
- W1981943644 hasConceptScore W1981943644C74750220 @default.