Matches in SemOpenAlex for { <https://semopenalex.org/work/W1982113704> ?p ?o ?g. }
- W1982113704 endingPage "P02008" @default.
- W1982113704 startingPage "P02008" @default.
- W1982113704 abstract "We report on a systematic approach for the calculation of the negativity in the ground state of a one-dimensional quantum field theory. The partial transpose rho_A^{T_2} of the reduced density matrix of a subsystem A=A_1 U A_2 is explicitly constructed as an imaginary-time path integral and from this the replicated traces Tr (rho_A^{T_2})^n are obtained. The logarithmic negativity E= log||rho_A^{T_2}|| is then the continuation to n->1 of the traces of the even powers. For pure states, this procedure reproduces the known results. We then apply this method to conformally invariant field theories in several different physical situations for infinite and finite systems and without or with boundaries. In particular, in the case of two adjacent intervals of lengths L1, L2 in an infinite system, we derive the result Esim(c/4) ln(L1 L2/(L1+L2)), where c is the central charge. For the more complicated case of two disjoint intervals, we show that the negativity depends only on the harmonic ratio of the four end-points and so is manifestly scale invariant. We explicitly calculate the scale-invariant functions for the replicated traces in the case of the CFT for the free compactified boson, but we have not so far been able to obtain the n->1 continuation for the negativity even in the limit of large compactification radius. We have checked all our findings against exact numerical results for the harmonic chain which is described by a non-compactified free boson." @default.
- W1982113704 created "2016-06-24" @default.
- W1982113704 creator A5004177676 @default.
- W1982113704 creator A5008391443 @default.
- W1982113704 creator A5076249507 @default.
- W1982113704 date "2013-02-01" @default.
- W1982113704 modified "2023-10-17" @default.
- W1982113704 title "Entanglement negativity in extended systems: a field theoretical approach" @default.
- W1982113704 cites W1531502562 @default.
- W1982113704 cites W1550516781 @default.
- W1982113704 cites W1922629554 @default.
- W1982113704 cites W1969360334 @default.
- W1982113704 cites W1971849222 @default.
- W1982113704 cites W1972259464 @default.
- W1982113704 cites W1972445258 @default.
- W1982113704 cites W1977534155 @default.
- W1982113704 cites W1979500553 @default.
- W1982113704 cites W1984004232 @default.
- W1982113704 cites W1988632248 @default.
- W1982113704 cites W1990516747 @default.
- W1982113704 cites W1991521093 @default.
- W1982113704 cites W1996152367 @default.
- W1982113704 cites W1997400646 @default.
- W1982113704 cites W1999732501 @default.
- W1982113704 cites W2002280622 @default.
- W1982113704 cites W2002598418 @default.
- W1982113704 cites W2003989474 @default.
- W1982113704 cites W2005847728 @default.
- W1982113704 cites W2017709228 @default.
- W1982113704 cites W2019207596 @default.
- W1982113704 cites W2020036892 @default.
- W1982113704 cites W2020764541 @default.
- W1982113704 cites W2022301954 @default.
- W1982113704 cites W2022444151 @default.
- W1982113704 cites W2022544578 @default.
- W1982113704 cites W2027059032 @default.
- W1982113704 cites W2027861911 @default.
- W1982113704 cites W2034920898 @default.
- W1982113704 cites W2036490361 @default.
- W1982113704 cites W2038145901 @default.
- W1982113704 cites W2040594360 @default.
- W1982113704 cites W2044424145 @default.
- W1982113704 cites W2045613496 @default.
- W1982113704 cites W2047572530 @default.
- W1982113704 cites W2050368830 @default.
- W1982113704 cites W2052969081 @default.
- W1982113704 cites W2053418077 @default.
- W1982113704 cites W2059178843 @default.
- W1982113704 cites W2060720876 @default.
- W1982113704 cites W2062804495 @default.
- W1982113704 cites W2084939881 @default.
- W1982113704 cites W2086981944 @default.
- W1982113704 cites W2088459250 @default.
- W1982113704 cites W2093747186 @default.
- W1982113704 cites W2094219754 @default.
- W1982113704 cites W2097035536 @default.
- W1982113704 cites W2100133991 @default.
- W1982113704 cites W2106725754 @default.
- W1982113704 cites W2110018289 @default.
- W1982113704 cites W2110283120 @default.
- W1982113704 cites W2113784378 @default.
- W1982113704 cites W2120998799 @default.
- W1982113704 cites W2121871268 @default.
- W1982113704 cites W2131581853 @default.
- W1982113704 cites W2138349424 @default.
- W1982113704 cites W2141130841 @default.
- W1982113704 cites W2143545260 @default.
- W1982113704 cites W2154299387 @default.
- W1982113704 cites W2161482522 @default.
- W1982113704 cites W2161604278 @default.
- W1982113704 cites W2166876891 @default.
- W1982113704 cites W2171823766 @default.
- W1982113704 cites W2172145746 @default.
- W1982113704 cites W2281702696 @default.
- W1982113704 cites W2614264617 @default.
- W1982113704 cites W2951432180 @default.
- W1982113704 cites W3098419902 @default.
- W1982113704 cites W3098603053 @default.
- W1982113704 cites W3098965530 @default.
- W1982113704 cites W3099940214 @default.
- W1982113704 cites W3100303516 @default.
- W1982113704 cites W3100848448 @default.
- W1982113704 cites W3100909833 @default.
- W1982113704 cites W3101154598 @default.
- W1982113704 cites W3101848964 @default.
- W1982113704 cites W3103113121 @default.
- W1982113704 cites W3103688923 @default.
- W1982113704 cites W3104237124 @default.
- W1982113704 cites W3104774456 @default.
- W1982113704 cites W3104960135 @default.
- W1982113704 cites W3105813661 @default.
- W1982113704 cites W3122881582 @default.
- W1982113704 cites W4206688401 @default.
- W1982113704 cites W4206801660 @default.
- W1982113704 doi "https://doi.org/10.1088/1742-5468/2013/02/p02008" @default.
- W1982113704 hasPublicationYear "2013" @default.
- W1982113704 type Work @default.
- W1982113704 sameAs 1982113704 @default.