Matches in SemOpenAlex for { <https://semopenalex.org/work/W198215275> ?p ?o ?g. }
- W198215275 abstract "With shrinking transistors and growth in parametric variability, statically managing die yield is no longer possible. Design for Manufacturing (DFM) techniques use increasingly bigger guard-bands that waste area, power, and performance, impeding Moore’s Law of semiconductor device scaling. Process Voltage Temperature (PVT) variations can turn a nominally homogeneous many-core die into a set of cores with heterogeneous performance.Network-on-Chip provides an effective and scalable way to integrate hundreds of heterogeneous cores without forcing each to give up its own PVT-induced operating point for the chip-wide common worst case. As with asynchronous logic, a NoC of regular, redundant, many-CLK/VDD cores can deliver the average rather than the worst case system performance with greater power efficiency and fault tolerance than its globally synchronous monolithic counterparts [41, 92]. This work shows that the Voltage-Frequency Island (VFI) architectures are also the key to tolerating and compensating for PVT variations.The VFI advantages cannot be realized without run-time task-to-core mapping and adaptive network routing that optimally match application resource requirements with heterogeneous cores and communication fabric. These systematic techniques are more effective at mitigating a variety of faults and variations than layout and circuit DFM. Most importantly, the gains from these techniques can be translated into die yield improvements and smaller DFM guard-bands.This work investigates core sparing and network routing. The developed models demonstrate that core sparing reduces the die cost asymptotically from O(A3) to O( Ah), and it is more cost efficient than larger design guard-bands of layout and circuit redundancy. The analysis outcome favors a greater number of smaller unreliable cores as opposed to a fewer larger reliable cores given a fixed die area. This points to the limitations and ultimately the futility of DFM techniques in the future semiconductor process generations.Adaptive network routing enables core sparing. More critically, it simultaneously combats the two sources of network load imbalance: on-die performance heterogeneity from PVT variations and application communication topology. With stochastic PVT variations, the developed Minimal Adaptive Total Congestion (MATC) router increases the expected network saturation bandwidth by 7–23% and reduces its variance by 2–10x as compared to the Dimension Order router. With systematic PVT variations, the improvements are 5–35%. These gains of the adaptive router can compensate for degradation due to performance variations and can thus be used to reduce design guard-bands. By treating cores as units of fault and variation tolerance, these systematic techniques provide a simple and consistent way to deal with static and dynamic performance variations and faults. These techniques are more effective than isolated DFM solutions. Rather than fighting and minimizing the on-die parametric variations, our approach takes advantage of the platform heterogeneity and manages its net system performance impact." @default.
- W198215275 created "2016-06-24" @default.
- W198215275 creator A5001895516 @default.
- W198215275 creator A5044520704 @default.
- W198215275 date "2009-01-01" @default.
- W198215275 modified "2023-09-26" @default.
- W198215275 title "A system-level approach to fault and variation resilience in multi-core die" @default.
- W198215275 cites W141121412 @default.
- W198215275 cites W1501077214 @default.
- W198215275 cites W1519965299 @default.
- W198215275 cites W1549605189 @default.
- W198215275 cites W1555915743 @default.
- W198215275 cites W1558220482 @default.
- W198215275 cites W1558796979 @default.
- W198215275 cites W1567324233 @default.
- W198215275 cites W1572287951 @default.
- W198215275 cites W1575732703 @default.
- W198215275 cites W1941458583 @default.
- W198215275 cites W1963518082 @default.
- W198215275 cites W1964339871 @default.
- W198215275 cites W1970296212 @default.
- W198215275 cites W1971313434 @default.
- W198215275 cites W1997817348 @default.
- W198215275 cites W2003346154 @default.
- W198215275 cites W2003436900 @default.
- W198215275 cites W2015540924 @default.
- W198215275 cites W2035720033 @default.
- W198215275 cites W2042151827 @default.
- W198215275 cites W2043318181 @default.
- W198215275 cites W2048276326 @default.
- W198215275 cites W2051973459 @default.
- W198215275 cites W2052345743 @default.
- W198215275 cites W2059807497 @default.
- W198215275 cites W2064759901 @default.
- W198215275 cites W2065742943 @default.
- W198215275 cites W2072126248 @default.
- W198215275 cites W2076915000 @default.
- W198215275 cites W2077556206 @default.
- W198215275 cites W2082193796 @default.
- W198215275 cites W2085176118 @default.
- W198215275 cites W2086202544 @default.
- W198215275 cites W2092677096 @default.
- W198215275 cites W2096069498 @default.
- W198215275 cites W2096227207 @default.
- W198215275 cites W2096805904 @default.
- W198215275 cites W2099433793 @default.
- W198215275 cites W2102387714 @default.
- W198215275 cites W2105415532 @default.
- W198215275 cites W2105597240 @default.
- W198215275 cites W2108990513 @default.
- W198215275 cites W2114453311 @default.
- W198215275 cites W2116295078 @default.
- W198215275 cites W2116516992 @default.
- W198215275 cites W2121865749 @default.
- W198215275 cites W2125793787 @default.
- W198215275 cites W2126810113 @default.
- W198215275 cites W2128941141 @default.
- W198215275 cites W2129984271 @default.
- W198215275 cites W2135269176 @default.
- W198215275 cites W2135933214 @default.
- W198215275 cites W2139457267 @default.
- W198215275 cites W2139637699 @default.
- W198215275 cites W2140583845 @default.
- W198215275 cites W2140757523 @default.
- W198215275 cites W2141331848 @default.
- W198215275 cites W2143207886 @default.
- W198215275 cites W2147629627 @default.
- W198215275 cites W2149196346 @default.
- W198215275 cites W2150526221 @default.
- W198215275 cites W2150956258 @default.
- W198215275 cites W2153169188 @default.
- W198215275 cites W2154054117 @default.
- W198215275 cites W2154323564 @default.
- W198215275 cites W2154786353 @default.
- W198215275 cites W2156391618 @default.
- W198215275 cites W2156967276 @default.
- W198215275 cites W2157024459 @default.
- W198215275 cites W2157070686 @default.
- W198215275 cites W2161755212 @default.
- W198215275 cites W2165021839 @default.
- W198215275 cites W2167041423 @default.
- W198215275 cites W2168674623 @default.
- W198215275 cites W2188838890 @default.
- W198215275 cites W2260842096 @default.
- W198215275 cites W2308329979 @default.
- W198215275 cites W2751555667 @default.
- W198215275 cites W3004540582 @default.
- W198215275 cites W3203992401 @default.
- W198215275 cites W85069844 @default.
- W198215275 cites W3016143648 @default.
- W198215275 hasPublicationYear "2009" @default.
- W198215275 type Work @default.
- W198215275 sameAs 198215275 @default.
- W198215275 citedByCount "0" @default.
- W198215275 crossrefType "journal-article" @default.
- W198215275 hasAuthorship W198215275A5001895516 @default.
- W198215275 hasAuthorship W198215275A5044520704 @default.
- W198215275 hasConcept C111106434 @default.
- W198215275 hasConcept C111919701 @default.
- W198215275 hasConcept C119599485 @default.