Matches in SemOpenAlex for { <https://semopenalex.org/work/W1982178440> ?p ?o ?g. }
- W1982178440 endingPage "5028" @default.
- W1982178440 startingPage "5023" @default.
- W1982178440 abstract "The support vector machine (SVM), which is a novel algorithm from the machine learning community, was used to develop quantitative structure–activity relationship (QSAR) for BK-channel activators. The data set was divided into 57 molecules of training and 14 molecules of test sets. A large number of descriptors were calculated and genetic algorithm (GA) was used to select variables that resulted in the best-fitted for models. A comparison between the obtained results using SVM with those of multi-parameter linear regression (MLR) revealed that SVM model was much better than MLR model. The improvements are due to the fact that the activity of the compounds demonstrates non-linear correlations with the selected descriptors. Also distances between Oxygen and Chlorine atoms, the mass, the van der Waals volume, the electronegativity, and the polarizability of the molecules are the main independent factors contributing to the BK-channels activity of the studied compounds." @default.
- W1982178440 created "2016-06-24" @default.
- W1982178440 creator A5019881420 @default.
- W1982178440 creator A5057723099 @default.
- W1982178440 creator A5064580259 @default.
- W1982178440 creator A5084607536 @default.
- W1982178440 date "2009-12-01" @default.
- W1982178440 modified "2023-10-16" @default.
- W1982178440 title "Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity" @default.
- W1982178440 cites W1965927885 @default.
- W1982178440 cites W1974166884 @default.
- W1982178440 cites W1980739931 @default.
- W1982178440 cites W1993180192 @default.
- W1982178440 cites W2004785362 @default.
- W1982178440 cites W2011306887 @default.
- W1982178440 cites W2012197049 @default.
- W1982178440 cites W2014797767 @default.
- W1982178440 cites W2015870870 @default.
- W1982178440 cites W2022376954 @default.
- W1982178440 cites W2023498767 @default.
- W1982178440 cites W2031318909 @default.
- W1982178440 cites W2037523753 @default.
- W1982178440 cites W2056730083 @default.
- W1982178440 cites W2057227234 @default.
- W1982178440 cites W2067217748 @default.
- W1982178440 cites W2070602884 @default.
- W1982178440 cites W2080476080 @default.
- W1982178440 cites W2080678454 @default.
- W1982178440 cites W2084417734 @default.
- W1982178440 cites W2089308116 @default.
- W1982178440 cites W2093405152 @default.
- W1982178440 cites W2094138202 @default.
- W1982178440 cites W2111234153 @default.
- W1982178440 cites W2111725125 @default.
- W1982178440 cites W2116296021 @default.
- W1982178440 cites W2132514305 @default.
- W1982178440 cites W2153427108 @default.
- W1982178440 cites W2155349252 @default.
- W1982178440 cites W2168404696 @default.
- W1982178440 cites W2218190766 @default.
- W1982178440 doi "https://doi.org/10.1016/j.ejmech.2009.09.006" @default.
- W1982178440 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19837488" @default.
- W1982178440 hasPublicationYear "2009" @default.
- W1982178440 type Work @default.
- W1982178440 sameAs 1982178440 @default.
- W1982178440 citedByCount "84" @default.
- W1982178440 countsByYear W19821784402012 @default.
- W1982178440 countsByYear W19821784402013 @default.
- W1982178440 countsByYear W19821784402014 @default.
- W1982178440 countsByYear W19821784402015 @default.
- W1982178440 countsByYear W19821784402016 @default.
- W1982178440 countsByYear W19821784402017 @default.
- W1982178440 countsByYear W19821784402018 @default.
- W1982178440 countsByYear W19821784402019 @default.
- W1982178440 countsByYear W19821784402020 @default.
- W1982178440 countsByYear W19821784402021 @default.
- W1982178440 countsByYear W19821784402022 @default.
- W1982178440 countsByYear W19821784402023 @default.
- W1982178440 crossrefType "journal-article" @default.
- W1982178440 hasAuthorship W1982178440A5019881420 @default.
- W1982178440 hasAuthorship W1982178440A5057723099 @default.
- W1982178440 hasAuthorship W1982178440A5064580259 @default.
- W1982178440 hasAuthorship W1982178440A5084607536 @default.
- W1982178440 hasConcept C107908354 @default.
- W1982178440 hasConcept C11413529 @default.
- W1982178440 hasConcept C119857082 @default.
- W1982178440 hasConcept C12267149 @default.
- W1982178440 hasConcept C126061179 @default.
- W1982178440 hasConcept C139287275 @default.
- W1982178440 hasConcept C147597530 @default.
- W1982178440 hasConcept C153180895 @default.
- W1982178440 hasConcept C154945302 @default.
- W1982178440 hasConcept C164126121 @default.
- W1982178440 hasConcept C164923092 @default.
- W1982178440 hasConcept C169903167 @default.
- W1982178440 hasConcept C177293861 @default.
- W1982178440 hasConcept C178790620 @default.
- W1982178440 hasConcept C185592680 @default.
- W1982178440 hasConcept C186060115 @default.
- W1982178440 hasConcept C32909587 @default.
- W1982178440 hasConcept C41008148 @default.
- W1982178440 hasConcept C48921125 @default.
- W1982178440 hasConcept C71240020 @default.
- W1982178440 hasConcept C86803240 @default.
- W1982178440 hasConcept C8880873 @default.
- W1982178440 hasConceptScore W1982178440C107908354 @default.
- W1982178440 hasConceptScore W1982178440C11413529 @default.
- W1982178440 hasConceptScore W1982178440C119857082 @default.
- W1982178440 hasConceptScore W1982178440C12267149 @default.
- W1982178440 hasConceptScore W1982178440C126061179 @default.
- W1982178440 hasConceptScore W1982178440C139287275 @default.
- W1982178440 hasConceptScore W1982178440C147597530 @default.
- W1982178440 hasConceptScore W1982178440C153180895 @default.
- W1982178440 hasConceptScore W1982178440C154945302 @default.
- W1982178440 hasConceptScore W1982178440C164126121 @default.
- W1982178440 hasConceptScore W1982178440C164923092 @default.
- W1982178440 hasConceptScore W1982178440C169903167 @default.
- W1982178440 hasConceptScore W1982178440C177293861 @default.