Matches in SemOpenAlex for { <https://semopenalex.org/work/W1982365963> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W1982365963 endingPage "406" @default.
- W1982365963 startingPage "395" @default.
- W1982365963 abstract "It is well known that the modulus of a doubly connected Riemann surface can be determined by the length-area method, that is, the method of extremal length, and that the extremal metric can be expressed in terms of a quadratic differential. Ahlfors introduced a related method based on the comparison of geodesic curvature and area. We show that the modulus of a doubly connected Riemann surface can be obtained by means of this geodesic curvature-area method. In the important special case in which there is a restriction on the curvature of the metrics, we identify all extremal metrics; they have constant curvature. 1. Introduction. A comparison of length and area has led to many important results in complex analysis. This method is based upon the fact that length and area are invariant under a conformal mapping when the metric undergoes a corresponding transformation. Ahlfors [2] considered a third conformally invariant quantity: geodesic curvature. He initiated a program based on the comparison of geodesic curvature and area. He presented the basic principles of the method and applied it to one simple case — the problem of estimating the conformal radius of a simply connected region. This is equivalent to estimating the hyperbolic metric on a simply connected region. He obtained explicit, sharp upper and lower bounds. The method is limited to smooth metrics. By making use of other methods, Minda [5] extended the upper bound to the class of SK(k) metrics. The work of Ahlfors indicates that the method has a wider range of applicability. But it is not clear that it will lead to equally explicit results in other situations. We apply the geodesic curvature-area method to the next simplest problem — estimation of the modulus of a doubly connected surface — and obtain an explicit, sharp upper bound. 2. Conformal metrics. In this section we gather together some basic facts concerning conformal metrics on Riemann surfaces. We adopt the convention, to be in effect for the remainder of the paper, that all metrics are positive and of class C2. Let X be a Riemann surface and p(z) dz a." @default.
- W1982365963 created "2016-06-24" @default.
- W1982365963 creator A5043290057 @default.
- W1982365963 date "1984-08-01" @default.
- W1982365963 modified "2023-10-05" @default.
- W1982365963 title "The modulus of a doubly connected region and the geodesic curvature-area method" @default.
- W1982365963 cites W1536526898 @default.
- W1982365963 cites W2046902822 @default.
- W1982365963 cites W2071932383 @default.
- W1982365963 cites W2322195346 @default.
- W1982365963 doi "https://doi.org/10.2140/pjm.1984.113.395" @default.
- W1982365963 hasPublicationYear "1984" @default.
- W1982365963 type Work @default.
- W1982365963 sameAs 1982365963 @default.
- W1982365963 citedByCount "0" @default.
- W1982365963 crossrefType "journal-article" @default.
- W1982365963 hasAuthorship W1982365963A5043290057 @default.
- W1982365963 hasBestOaLocation W19823659631 @default.
- W1982365963 hasConcept C134306372 @default.
- W1982365963 hasConcept C165818556 @default.
- W1982365963 hasConcept C193867417 @default.
- W1982365963 hasConcept C195065555 @default.
- W1982365963 hasConcept C2524010 @default.
- W1982365963 hasConcept C33923547 @default.
- W1982365963 hasConceptScore W1982365963C134306372 @default.
- W1982365963 hasConceptScore W1982365963C165818556 @default.
- W1982365963 hasConceptScore W1982365963C193867417 @default.
- W1982365963 hasConceptScore W1982365963C195065555 @default.
- W1982365963 hasConceptScore W1982365963C2524010 @default.
- W1982365963 hasConceptScore W1982365963C33923547 @default.
- W1982365963 hasIssue "2" @default.
- W1982365963 hasLocation W19823659631 @default.
- W1982365963 hasLocation W19823659632 @default.
- W1982365963 hasOpenAccess W1982365963 @default.
- W1982365963 hasPrimaryLocation W19823659631 @default.
- W1982365963 hasRelatedWork W1480176488 @default.
- W1982365963 hasRelatedWork W1974584795 @default.
- W1982365963 hasRelatedWork W2008948237 @default.
- W1982365963 hasRelatedWork W2066635351 @default.
- W1982365963 hasRelatedWork W2071383071 @default.
- W1982365963 hasRelatedWork W2078299291 @default.
- W1982365963 hasRelatedWork W2890836297 @default.
- W1982365963 hasRelatedWork W2998142867 @default.
- W1982365963 hasRelatedWork W3111121251 @default.
- W1982365963 hasRelatedWork W4377140423 @default.
- W1982365963 hasVolume "113" @default.
- W1982365963 isParatext "false" @default.
- W1982365963 isRetracted "false" @default.
- W1982365963 magId "1982365963" @default.
- W1982365963 workType "article" @default.