Matches in SemOpenAlex for { <https://semopenalex.org/work/W1982474820> ?p ?o ?g. }
- W1982474820 endingPage "386" @default.
- W1982474820 startingPage "373" @default.
- W1982474820 abstract "This paper focuses on motion tracking in echocardiographic ultrasound images. The difficulty of this task is related to the fact that echographic image formation induces decorrelation between the underlying motion of tissue and the observed speckle motion. Since Meunier’s seminal work, this phenomenon has been investigated in many simulation studies as part of speckle tracking or optical flow-based motion estimation techniques. Most of these studies modeled image formation using a linear convolution approach, where the system point-spread function (PSF) was spatially invariant and the probe geometry was linear. While these assumptions are valid over a small spatial area, they constitute an oversimplification when a complete image is considered. Indeed, echocardiographic acquisition geometry relies on sectorial probes and the system PSF is not perfectly invariant, even if dynamic focusing is performed. This study investigated the influence of sectorial geometry and spatially varying PSF on speckle tracking. This was done by simulating a typical 64 elements, cardiac probe operating at 3.5 MHz frequency, using the simulation software Field II. This simulation first allowed quantification of the decorrelation induced by the system between two images when simple motion such as translation or incompressible deformation was applied. We then quantified the influence of decorrelation on speckle tracking accuracy using a conventional block matching (BM) algorithm and a bilinear deformable block matching (BDBM) algorithm. In echocardiography, motion estimation is usually performed on reconstructed images where the initial sectorial (i.e., polar) data are interpolated on a cartesian grid. We therefore studied the influence of sectorial acquisition geometry, by performing block matching on cartesian and polar data. Simulation results show that decorrelation is spatially variant and depends on the position of the region where motion takes place relative to the probe. Previous studies did not consider translation in their experiments, since their simulation model (spatially invariant PSF and linear probe) yields by definition no decorrelation. On the opposite, our realistic simulation settings (i.e., sectorial probe and realistic beamforming) show that translation yields decorrelation, particularly when translation is large (above 6 mm) and when the moving regions is located close to the probe (distance to probe less than 50 mm). The tracking accuracy study shows that tracking errors are larger for the usual cartesian data, whatever the estimation algorithm, indicating that speckle tracking is more reliable when based on the unconverted polar data: for axial translations in the range 0–10 mm, the maximum error associated to conventional block matching (BM) is 4.2 mm when using cartesian data and 1.8 mm for polar data. The corresponding errors are 1.8 mm (cartesian data) and 0.4 mm (polar data) for an applied deformation in the range 0–10%. We also show that accuracy is improved by using the bilinear deformable block matching (BDBM) algorithm. For translation, the maximum error associated to the bilinear deformable block matching is indeed 3.6 mm (cartesian data) and 1.2 mm (polar data). Regarding deformation, the error is 0.7 mm (cartesian data) and 0.3 mm (polar data). These figures also indicates that the larger improvement brought by the bilinear deformable block matching over standard block matching logically takes place when deformation on cartesian data is considered (the error drops from 1.8 to 0.7 mm is this case). We give a preliminary evaluation of this framework on a cardiac sequence acquired with a Toshiba Powervision 6000 imaging system using a probe operating at 3.25 MHz. As ground truth reference motion is not available in this case, motion estimation performance was evaluated by comparing a reference image (i.e., the first image of the sequence) and the subsequent images after motion compensation has been applied. The comparison was quantified by computing the normalized correlation between the reference and the motion-compensated images. The obtained results are consistent with the simulation data: correlation is smaller for cartesian data, whatever the estimation algorithm. The correlation associated to the conventional block matching (BM) is in the range 0.45–0.02 when using cartesian data and in the range 0.65–0.2 for polar data. The corresponding correlation ranges for the bilinear deformable block matching are 0.98–0.2 and 0.98–0.55. In the same way these figures indicate that the bilinear deformable block matching yield a larger improvement when cartesian data are considered (correlation range increases from 0.45–0.02 to 0.98–0.2 in this case)." @default.
- W1982474820 created "2016-06-24" @default.
- W1982474820 creator A5026215878 @default.
- W1982474820 creator A5037356492 @default.
- W1982474820 creator A5039493086 @default.
- W1982474820 creator A5053099667 @default.
- W1982474820 creator A5086212167 @default.
- W1982474820 date "2010-03-01" @default.
- W1982474820 modified "2023-10-10" @default.
- W1982474820 title "Analysis of motion tracking in echocardiographic image sequences: Influence of system geometry and point-spread function" @default.
- W1982474820 cites W1965617472 @default.
- W1982474820 cites W1967349311 @default.
- W1982474820 cites W1974581420 @default.
- W1982474820 cites W1978106835 @default.
- W1982474820 cites W1978973828 @default.
- W1982474820 cites W1983090459 @default.
- W1982474820 cites W2038135297 @default.
- W1982474820 cites W2077195221 @default.
- W1982474820 cites W2080860603 @default.
- W1982474820 cites W2084707752 @default.
- W1982474820 cites W2094022846 @default.
- W1982474820 cites W2097210147 @default.
- W1982474820 cites W2097399825 @default.
- W1982474820 cites W2103751473 @default.
- W1982474820 cites W2104289161 @default.
- W1982474820 cites W2112280212 @default.
- W1982474820 cites W2115779572 @default.
- W1982474820 cites W2119248338 @default.
- W1982474820 cites W2128591770 @default.
- W1982474820 cites W2129422947 @default.
- W1982474820 cites W2130257154 @default.
- W1982474820 cites W2141837166 @default.
- W1982474820 cites W2148895666 @default.
- W1982474820 cites W2166695682 @default.
- W1982474820 cites W2166793304 @default.
- W1982474820 cites W2168732370 @default.
- W1982474820 cites W2169072967 @default.
- W1982474820 cites W2169288199 @default.
- W1982474820 cites W2171857449 @default.
- W1982474820 cites W2172039249 @default.
- W1982474820 cites W2526162484 @default.
- W1982474820 cites W77932201 @default.
- W1982474820 doi "https://doi.org/10.1016/j.ultras.2009.09.001" @default.
- W1982474820 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19837445" @default.
- W1982474820 hasPublicationYear "2010" @default.
- W1982474820 type Work @default.
- W1982474820 sameAs 1982474820 @default.
- W1982474820 citedByCount "11" @default.
- W1982474820 countsByYear W19824748202012 @default.
- W1982474820 countsByYear W19824748202014 @default.
- W1982474820 countsByYear W19824748202015 @default.
- W1982474820 countsByYear W19824748202017 @default.
- W1982474820 countsByYear W19824748202021 @default.
- W1982474820 crossrefType "journal-article" @default.
- W1982474820 hasAuthorship W1982474820A5026215878 @default.
- W1982474820 hasAuthorship W1982474820A5037356492 @default.
- W1982474820 hasAuthorship W1982474820A5039493086 @default.
- W1982474820 hasAuthorship W1982474820A5053099667 @default.
- W1982474820 hasAuthorship W1982474820A5086212167 @default.
- W1982474820 hasConcept C10161872 @default.
- W1982474820 hasConcept C102290492 @default.
- W1982474820 hasConcept C104114177 @default.
- W1982474820 hasConcept C104317684 @default.
- W1982474820 hasConcept C105580179 @default.
- W1982474820 hasConcept C121332964 @default.
- W1982474820 hasConcept C124774092 @default.
- W1982474820 hasConcept C149364088 @default.
- W1982474820 hasConcept C154945302 @default.
- W1982474820 hasConcept C177860922 @default.
- W1982474820 hasConcept C185592680 @default.
- W1982474820 hasConcept C190470478 @default.
- W1982474820 hasConcept C205203396 @default.
- W1982474820 hasConcept C2524010 @default.
- W1982474820 hasConcept C31972630 @default.
- W1982474820 hasConcept C33923547 @default.
- W1982474820 hasConcept C37914503 @default.
- W1982474820 hasConcept C41008148 @default.
- W1982474820 hasConcept C55493867 @default.
- W1982474820 hasConcept C74050887 @default.
- W1982474820 hasConcept C95020103 @default.
- W1982474820 hasConceptScore W1982474820C10161872 @default.
- W1982474820 hasConceptScore W1982474820C102290492 @default.
- W1982474820 hasConceptScore W1982474820C104114177 @default.
- W1982474820 hasConceptScore W1982474820C104317684 @default.
- W1982474820 hasConceptScore W1982474820C105580179 @default.
- W1982474820 hasConceptScore W1982474820C121332964 @default.
- W1982474820 hasConceptScore W1982474820C124774092 @default.
- W1982474820 hasConceptScore W1982474820C149364088 @default.
- W1982474820 hasConceptScore W1982474820C154945302 @default.
- W1982474820 hasConceptScore W1982474820C177860922 @default.
- W1982474820 hasConceptScore W1982474820C185592680 @default.
- W1982474820 hasConceptScore W1982474820C190470478 @default.
- W1982474820 hasConceptScore W1982474820C205203396 @default.
- W1982474820 hasConceptScore W1982474820C2524010 @default.
- W1982474820 hasConceptScore W1982474820C31972630 @default.
- W1982474820 hasConceptScore W1982474820C33923547 @default.
- W1982474820 hasConceptScore W1982474820C37914503 @default.
- W1982474820 hasConceptScore W1982474820C41008148 @default.