Matches in SemOpenAlex for { <https://semopenalex.org/work/W1982483764> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W1982483764 abstract "The Lister Hill National Center for Biomedical Communications is a Research and Development Division of the National Library of Medicine. One of the Center's current research projects involves the conversion of entire journals to bitmapped binary page images. In an effort to reduce operator errors that sometimes occur during document capture, three back error propagation networks were designed to automatically identify journal title based on features in the binary image of the journal's front cover page. For all three network designs, twenty five journal titles were randomly selected from the stored database of image files. Seven cover page images from each title were selected as the training set. For each title, three other cover page images were selected as the test set. Each bitmapped image was initially processed by counting the total number of black pixels in 32-pixel wide rows and columns of the page image. For the first network, these counts were scaled to create 122-element count vectors as the input vectors to a back error propagation network. The network had one output node for each journal classification. Although the network was successful in correctly classifying the 25 journals, the large input vector resulted in a large network and, consequently, a long training period. In an alternative approach, the first thirty-five coefficients of the Fast Fourier Transform of the count vector were used as the input vector to a second network. A third approach was to train a separate network for each journal using the original count vectors as input and with only one output node. The output of the network could be 'yes' (it is this journal) or 'no' (it is not this journal). This final design promises to be most efficient for a system in which journal titles are added or removed as it does not require retraining a large network for each change." @default.
- W1982483764 created "2016-06-24" @default.
- W1982483764 creator A5047661141 @default.
- W1982483764 creator A5074891005 @default.
- W1982483764 creator A5085363735 @default.
- W1982483764 date "1993-09-02" @default.
- W1982483764 modified "2023-09-26" @default.
- W1982483764 title "<title>Using back error propagation networks for automatic document image classification</title>" @default.
- W1982483764 doi "https://doi.org/10.1117/12.152534" @default.
- W1982483764 hasPublicationYear "1993" @default.
- W1982483764 type Work @default.
- W1982483764 sameAs 1982483764 @default.
- W1982483764 citedByCount "1" @default.
- W1982483764 crossrefType "proceedings-article" @default.
- W1982483764 hasAuthorship W1982483764A5047661141 @default.
- W1982483764 hasAuthorship W1982483764A5074891005 @default.
- W1982483764 hasAuthorship W1982483764A5085363735 @default.
- W1982483764 hasConcept C105795698 @default.
- W1982483764 hasConcept C115961682 @default.
- W1982483764 hasConcept C121684516 @default.
- W1982483764 hasConcept C124101348 @default.
- W1982483764 hasConcept C127413603 @default.
- W1982483764 hasConcept C135598885 @default.
- W1982483764 hasConcept C153180895 @default.
- W1982483764 hasConcept C154945302 @default.
- W1982483764 hasConcept C160633673 @default.
- W1982483764 hasConcept C165064840 @default.
- W1982483764 hasConcept C177264268 @default.
- W1982483764 hasConcept C193828747 @default.
- W1982483764 hasConcept C199360897 @default.
- W1982483764 hasConcept C21442007 @default.
- W1982483764 hasConcept C23123220 @default.
- W1982483764 hasConcept C2780428219 @default.
- W1982483764 hasConcept C33923547 @default.
- W1982483764 hasConcept C41008148 @default.
- W1982483764 hasConcept C59662460 @default.
- W1982483764 hasConcept C77088390 @default.
- W1982483764 hasConcept C78519656 @default.
- W1982483764 hasConcept C9417928 @default.
- W1982483764 hasConceptScore W1982483764C105795698 @default.
- W1982483764 hasConceptScore W1982483764C115961682 @default.
- W1982483764 hasConceptScore W1982483764C121684516 @default.
- W1982483764 hasConceptScore W1982483764C124101348 @default.
- W1982483764 hasConceptScore W1982483764C127413603 @default.
- W1982483764 hasConceptScore W1982483764C135598885 @default.
- W1982483764 hasConceptScore W1982483764C153180895 @default.
- W1982483764 hasConceptScore W1982483764C154945302 @default.
- W1982483764 hasConceptScore W1982483764C160633673 @default.
- W1982483764 hasConceptScore W1982483764C165064840 @default.
- W1982483764 hasConceptScore W1982483764C177264268 @default.
- W1982483764 hasConceptScore W1982483764C193828747 @default.
- W1982483764 hasConceptScore W1982483764C199360897 @default.
- W1982483764 hasConceptScore W1982483764C21442007 @default.
- W1982483764 hasConceptScore W1982483764C23123220 @default.
- W1982483764 hasConceptScore W1982483764C2780428219 @default.
- W1982483764 hasConceptScore W1982483764C33923547 @default.
- W1982483764 hasConceptScore W1982483764C41008148 @default.
- W1982483764 hasConceptScore W1982483764C59662460 @default.
- W1982483764 hasConceptScore W1982483764C77088390 @default.
- W1982483764 hasConceptScore W1982483764C78519656 @default.
- W1982483764 hasConceptScore W1982483764C9417928 @default.
- W1982483764 hasLocation W19824837641 @default.
- W1982483764 hasOpenAccess W1982483764 @default.
- W1982483764 hasPrimaryLocation W19824837641 @default.
- W1982483764 hasRelatedWork W1980865109 @default.
- W1982483764 hasRelatedWork W2110799738 @default.
- W1982483764 hasRelatedWork W2136485282 @default.
- W1982483764 hasRelatedWork W2150432825 @default.
- W1982483764 hasRelatedWork W2235797036 @default.
- W1982483764 hasRelatedWork W2546871836 @default.
- W1982483764 hasRelatedWork W3022966022 @default.
- W1982483764 hasRelatedWork W3030177747 @default.
- W1982483764 hasRelatedWork W3167448336 @default.
- W1982483764 hasRelatedWork W85249387 @default.
- W1982483764 isParatext "false" @default.
- W1982483764 isRetracted "false" @default.
- W1982483764 magId "1982483764" @default.
- W1982483764 workType "article" @default.