Matches in SemOpenAlex for { <https://semopenalex.org/work/W1982508743> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W1982508743 abstract "With the increasing availability of low-cost — yet precise — depth cameras, “texture+depth” content has become more and more popular in several computer vision and 3D rendering tasks. Indeed, depth images bring enriched geometrical information about the scene which would be hard and often impossible to estimate from conventional texture pictures. In this paper, we investigate how the geometric information provided by depth data can be employed to improve the stability of local visual features under a large spectrum of viewpoint changes. Specifically, we leverage depth information to derive local projective transformations and compute descriptor patches from the texture image. Since the proposed approach may be used with any blob detector, it can be seamlessly integrated into the processing chain of state-of-the-art visual features such as SIFT. Our experiments show that a geometry-aware feature extraction can bring advantages in terms of descriptor distinctiveness with respect to state-of-the-art scale and affine-invariant approaches." @default.
- W1982508743 created "2016-06-24" @default.
- W1982508743 creator A5002216318 @default.
- W1982508743 creator A5034069364 @default.
- W1982508743 creator A5051235308 @default.
- W1982508743 date "2014-10-01" @default.
- W1982508743 modified "2023-10-15" @default.
- W1982508743 title "Local visual features extraction from texture+depth content based on depth image analysis" @default.
- W1982508743 cites W1676552347 @default.
- W1982508743 cites W1970269179 @default.
- W1982508743 cites W1980911747 @default.
- W1982508743 cites W1995266040 @default.
- W1982508743 cites W2005433550 @default.
- W1982508743 cites W2012592962 @default.
- W1982508743 cites W2049868887 @default.
- W1982508743 cites W2052094314 @default.
- W1982508743 cites W2109200236 @default.
- W1982508743 cites W2117228865 @default.
- W1982508743 cites W2119605622 @default.
- W1982508743 cites W2124404372 @default.
- W1982508743 cites W2131846894 @default.
- W1982508743 cites W2132761823 @default.
- W1982508743 cites W2137540983 @default.
- W1982508743 cites W2141584146 @default.
- W1982508743 cites W2151103935 @default.
- W1982508743 cites W2165497495 @default.
- W1982508743 doi "https://doi.org/10.1109/icip.2014.7025568" @default.
- W1982508743 hasPublicationYear "2014" @default.
- W1982508743 type Work @default.
- W1982508743 sameAs 1982508743 @default.
- W1982508743 citedByCount "13" @default.
- W1982508743 countsByYear W19825087432015 @default.
- W1982508743 countsByYear W19825087432016 @default.
- W1982508743 countsByYear W19825087432017 @default.
- W1982508743 countsByYear W19825087432018 @default.
- W1982508743 countsByYear W19825087432019 @default.
- W1982508743 countsByYear W19825087432022 @default.
- W1982508743 crossrefType "proceedings-article" @default.
- W1982508743 hasAuthorship W1982508743A5002216318 @default.
- W1982508743 hasAuthorship W1982508743A5034069364 @default.
- W1982508743 hasAuthorship W1982508743A5051235308 @default.
- W1982508743 hasConcept C115961682 @default.
- W1982508743 hasConcept C124504099 @default.
- W1982508743 hasConcept C153180895 @default.
- W1982508743 hasConcept C154945302 @default.
- W1982508743 hasConcept C185592680 @default.
- W1982508743 hasConcept C2781195486 @default.
- W1982508743 hasConcept C31972630 @default.
- W1982508743 hasConcept C41008148 @default.
- W1982508743 hasConcept C43617362 @default.
- W1982508743 hasConcept C4725764 @default.
- W1982508743 hasConcept C52622490 @default.
- W1982508743 hasConcept C63099799 @default.
- W1982508743 hasConceptScore W1982508743C115961682 @default.
- W1982508743 hasConceptScore W1982508743C124504099 @default.
- W1982508743 hasConceptScore W1982508743C153180895 @default.
- W1982508743 hasConceptScore W1982508743C154945302 @default.
- W1982508743 hasConceptScore W1982508743C185592680 @default.
- W1982508743 hasConceptScore W1982508743C2781195486 @default.
- W1982508743 hasConceptScore W1982508743C31972630 @default.
- W1982508743 hasConceptScore W1982508743C41008148 @default.
- W1982508743 hasConceptScore W1982508743C43617362 @default.
- W1982508743 hasConceptScore W1982508743C4725764 @default.
- W1982508743 hasConceptScore W1982508743C52622490 @default.
- W1982508743 hasConceptScore W1982508743C63099799 @default.
- W1982508743 hasLocation W19825087431 @default.
- W1982508743 hasOpenAccess W1982508743 @default.
- W1982508743 hasPrimaryLocation W19825087431 @default.
- W1982508743 hasRelatedWork W1562793155 @default.
- W1982508743 hasRelatedWork W1840273037 @default.
- W1982508743 hasRelatedWork W2045844866 @default.
- W1982508743 hasRelatedWork W2109526792 @default.
- W1982508743 hasRelatedWork W2138304221 @default.
- W1982508743 hasRelatedWork W2151022383 @default.
- W1982508743 hasRelatedWork W2212329603 @default.
- W1982508743 hasRelatedWork W2903793793 @default.
- W1982508743 hasRelatedWork W3204757516 @default.
- W1982508743 hasRelatedWork W2476566122 @default.
- W1982508743 isParatext "false" @default.
- W1982508743 isRetracted "false" @default.
- W1982508743 magId "1982508743" @default.
- W1982508743 workType "article" @default.