Matches in SemOpenAlex for { <https://semopenalex.org/work/W1982806758> ?p ?o ?g. }
- W1982806758 endingPage "40" @default.
- W1982806758 startingPage "26" @default.
- W1982806758 abstract "Estrogen receptors (ERs) mediate genomic and nongenomic vasodilator effects, but estrogen therapy may not provide systemic vascular protection. To test whether this is because of regional differences in ER distribution or vasodilator activity, cephalic (carotid artery), thoracic (thoracic aorta and pulmonary artery), and abdominal arteries (abdominal aorta, mesenteric artery, and renal artery) from female Sprague–Dawley rats were prepared to measure contraction to phenylephrine and relaxation to acetylcholine (ACh) and the ER activators 17β-estradiol (E2) (all ERs), 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)-tris-phenol (PPT) (ERα), diarylpropionitrile (DPN) (ERβ), and (±)-1-[(3aR*,4S*,9bS*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone (G1) (GPR30). Phenylephrine caused contraction that was enhanced in endothelium-denuded aorta, supporting endothelial release of vasodilators. In cephalic and thoracic arteries, ACh relaxation was abolished by the nitric oxide (NO) synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME), suggesting a role of NO. In mesenteric vessels, ACh-induced relaxation was partly inhibited by the L-NAME + cyclooxygenase inhibitor indomethacin and blocked by the K+ channel blocker tetraethylammonium, suggesting a hyperpolarization pathway. E2 and PPT caused similar relaxation in all vessels. DPN and G1 caused smaller relaxation that was more prominent in abdominal vessels. Reverse transcription–polymerase chain reaction revealed variable ERα messenger RNA expression and increased ERβ in carotid artery and GPR30 in abdominal arteries. Western blots revealed greater amounts of ERα, ERβ, and GPR30 in abdominal arteries. In thoracic aorta, E2-, PPT-, and DPN-induced relaxation was blocked by L-NAME and was associated with increased nitrite/nitrate production, suggesting a role of NO. In abdominal vessels, E2-, PPT-, DPN-, and G1-induced relaxation persisted in L-NAME + indomethacin + tetraethylammonium-treated or endothelium-denuded arteries, suggesting direct effect on vascular smooth muscle. E2, PPT, DPN, and G1 caused greater relaxation of KCl-induced contraction in abdominal vessels, suggesting inhibitory effects on Ca2+ entry. Thus, E2 and ERα stimulation produces similar relaxation of the cephalic, thoracic, and abdominal arteries. In the cephalic and thoracic arteries, particularly the thoracic aorta, E2-induced and ERα- and ERβ-mediated vasodilation involves NO production. ERβ- and GPR30-mediated relaxation is greater in the abdominal arteries and seems to involve hyperpolarization and inhibition of vascular smooth muscle Ca2+ entry. Specific ER agonists could produce vasodilation in specific vascular beds without affecting other vessels in the systemic circulation." @default.
- W1982806758 created "2016-06-24" @default.
- W1982806758 creator A5004855714 @default.
- W1982806758 creator A5051669541 @default.
- W1982806758 creator A5063840461 @default.
- W1982806758 creator A5087973491 @default.
- W1982806758 date "2013-07-01" @default.
- W1982806758 modified "2023-10-18" @default.
- W1982806758 title "Subtype-specific Estrogen Receptor-mediated Vasodilator Activity in the Cephalic, Thoracic, and Abdominal Vasculature of Female Rat" @default.
- W1982806758 cites W1948664297 @default.
- W1982806758 cites W1967479320 @default.
- W1982806758 cites W1970199941 @default.
- W1982806758 cites W1973626130 @default.
- W1982806758 cites W1981467972 @default.
- W1982806758 cites W1990482492 @default.
- W1982806758 cites W1991614164 @default.
- W1982806758 cites W1996769559 @default.
- W1982806758 cites W2000683907 @default.
- W1982806758 cites W2001285955 @default.
- W1982806758 cites W2006862162 @default.
- W1982806758 cites W2015512055 @default.
- W1982806758 cites W2017140757 @default.
- W1982806758 cites W2017886735 @default.
- W1982806758 cites W2018312028 @default.
- W1982806758 cites W2036862160 @default.
- W1982806758 cites W2037602314 @default.
- W1982806758 cites W2038482691 @default.
- W1982806758 cites W2039988001 @default.
- W1982806758 cites W2047250311 @default.
- W1982806758 cites W2059359136 @default.
- W1982806758 cites W2072170367 @default.
- W1982806758 cites W2078507841 @default.
- W1982806758 cites W2079453151 @default.
- W1982806758 cites W2082986933 @default.
- W1982806758 cites W2085814830 @default.
- W1982806758 cites W2090509571 @default.
- W1982806758 cites W2095823516 @default.
- W1982806758 cites W2113509381 @default.
- W1982806758 cites W2121353941 @default.
- W1982806758 cites W2125561306 @default.
- W1982806758 cites W2126914997 @default.
- W1982806758 cites W2131610283 @default.
- W1982806758 cites W2132822752 @default.
- W1982806758 cites W2134812232 @default.
- W1982806758 cites W2136478511 @default.
- W1982806758 cites W2138038413 @default.
- W1982806758 cites W2139125023 @default.
- W1982806758 cites W2139593461 @default.
- W1982806758 cites W2139619678 @default.
- W1982806758 cites W2139927416 @default.
- W1982806758 cites W2140002693 @default.
- W1982806758 cites W2141369673 @default.
- W1982806758 cites W2145401788 @default.
- W1982806758 cites W2147315723 @default.
- W1982806758 cites W2148496370 @default.
- W1982806758 cites W2155847518 @default.
- W1982806758 cites W2158477450 @default.
- W1982806758 cites W2159141777 @default.
- W1982806758 cites W2161953383 @default.
- W1982806758 cites W2185806249 @default.
- W1982806758 cites W2345559605 @default.
- W1982806758 cites W2414350339 @default.
- W1982806758 cites W2990290773 @default.
- W1982806758 cites W4247105274 @default.
- W1982806758 cites W4249334806 @default.
- W1982806758 cites W4250913968 @default.
- W1982806758 cites W4256434216 @default.
- W1982806758 doi "https://doi.org/10.1097/fjc.0b013e31828bc88a" @default.
- W1982806758 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3664271" @default.
- W1982806758 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23429596" @default.
- W1982806758 hasPublicationYear "2013" @default.
- W1982806758 type Work @default.
- W1982806758 sameAs 1982806758 @default.
- W1982806758 citedByCount "38" @default.
- W1982806758 countsByYear W19828067582013 @default.
- W1982806758 countsByYear W19828067582014 @default.
- W1982806758 countsByYear W19828067582015 @default.
- W1982806758 countsByYear W19828067582016 @default.
- W1982806758 countsByYear W19828067582017 @default.
- W1982806758 countsByYear W19828067582018 @default.
- W1982806758 countsByYear W19828067582019 @default.
- W1982806758 countsByYear W19828067582020 @default.
- W1982806758 countsByYear W19828067582021 @default.
- W1982806758 countsByYear W19828067582022 @default.
- W1982806758 countsByYear W19828067582023 @default.
- W1982806758 crossrefType "journal-article" @default.
- W1982806758 hasAuthorship W1982806758A5004855714 @default.
- W1982806758 hasAuthorship W1982806758A5051669541 @default.
- W1982806758 hasAuthorship W1982806758A5063840461 @default.
- W1982806758 hasAuthorship W1982806758A5087973491 @default.
- W1982806758 hasBestOaLocation W19828067582 @default.
- W1982806758 hasConcept C120770815 @default.
- W1982806758 hasConcept C121608353 @default.
- W1982806758 hasConcept C126322002 @default.
- W1982806758 hasConcept C134018914 @default.
- W1982806758 hasConcept C166471694 @default.
- W1982806758 hasConcept C185592680 @default.
- W1982806758 hasConcept C1918360 @default.