Matches in SemOpenAlex for { <https://semopenalex.org/work/W1982809327> ?p ?o ?g. }
- W1982809327 endingPage "163" @default.
- W1982809327 startingPage "144" @default.
- W1982809327 abstract "The magnetic properties of the hexagonal antiferromagnetic CsMn${mathrm{F}}_{3}$ have been investigated by magnetic susceptibility, torsion, electron resonance, and nuclear-antiferromagnetic double resonance. Torsion measurements establish a transition to an antiferromagnetically ordered state at 53.5ifmmode^circelsetextdegreefi{}K. A weak sixfold anisotropy in the transverse plane and a large axial anisotropy along the $c$ axis corresponding, respectively, to the fields $frac{36{K}_{3}}{M}=1.1$ Oe and $frac{{K}_{1}}{M}=ensuremath{-}7500$ Oe are detected. Susceptibility measurements at 4.2ifmmode^circelsetextdegreefi{}K establish an exchange field ${H}_{E}=3.5ifmmodetimeselsetexttimesfi{}{10}^{5}$ Oe. The temperature dependence of ${K}_{3}$ was observed from 4.2ifmmode^circelsetextdegreefi{}K to the transition temperature and compared with spin-wave and molecular field theory. From paramagnetic resonance measurements an isotropic $g$ value of 1.9989ifmmodepmelsetextpmfi{}0.003 is determined. Magnetic resonance measurements below the transition temperature with the applied field in the transverse plane show a weak sixfold anisotropy consistent with the torsion measurements. Measurements out of the transverse plane confirm the large axial anisotropy. In the temperature range from 0.3 to 4.2ifmmode^circelsetextdegreefi{}K there is an additional temperature dependent anisotropy field ${H}_{A,T}=frac{9.15}{T}$ Oe directed along the sublattices. This field arises from the hyperfine interaction with the ${mathrm{Mn}}^{55}$ nuclear magnetization. Assuming parallel ordering within the transverse planes with adjacent planes alternately magnetized, a calculation of the classical dipolar interactions and of the ligand field anisotropy arising from the displacement of the nearest neighbor fluorines gives a combined axial anisotropy field $frac{{K}_{1}}{M}=ensuremath{-}7965$ Oe. The in-plane anisotropy due to second-order dipolar interactions is estimated to be ensuremath{approx}2 Oe in reasonable agreement with observation. The strong coupling between the nuclei and electrons affords an opportunity to observe the ${mathrm{Mn}}^{55}$ nuclear resonance indirectly by monitoring the position of the electron resonance field. A saturation of the nuclear magnetization is observed at 668 Mc/sec which is (3ifmmodepmelsetextpmfi{}1)% smaller than the calculated average hyperfine field of 689ifmmodepmelsetextpmfi{}7 Mc/sec. This indicates the presence of a zero-point reduction in the electron spin." @default.
- W1982809327 created "2016-06-24" @default.
- W1982809327 creator A5010263688 @default.
- W1982809327 creator A5017636218 @default.
- W1982809327 creator A5018568783 @default.
- W1982809327 date "1963-10-01" @default.
- W1982809327 modified "2023-10-17" @default.
- W1982809327 title "Magnetic Properties of the Hexagonal Antiferromagnet CsMn<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=normal>F</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>" @default.
- W1982809327 cites W1587647893 @default.
- W1982809327 cites W1605435346 @default.
- W1982809327 cites W1628037791 @default.
- W1982809327 cites W1631785453 @default.
- W1982809327 cites W1653615531 @default.
- W1982809327 cites W1967675243 @default.
- W1982809327 cites W1973637866 @default.
- W1982809327 cites W1974420691 @default.
- W1982809327 cites W1975927222 @default.
- W1982809327 cites W1979330284 @default.
- W1982809327 cites W1991308198 @default.
- W1982809327 cites W1991632880 @default.
- W1982809327 cites W2000467880 @default.
- W1982809327 cites W2002138961 @default.
- W1982809327 cites W2008791870 @default.
- W1982809327 cites W2013252279 @default.
- W1982809327 cites W2024660633 @default.
- W1982809327 cites W2032837917 @default.
- W1982809327 cites W2049583929 @default.
- W1982809327 cites W2050632401 @default.
- W1982809327 cites W2051869349 @default.
- W1982809327 cites W2055088115 @default.
- W1982809327 cites W2056153467 @default.
- W1982809327 cites W2056654974 @default.
- W1982809327 cites W2057386295 @default.
- W1982809327 cites W2059292673 @default.
- W1982809327 cites W2059482835 @default.
- W1982809327 cites W2062125812 @default.
- W1982809327 cites W2066860838 @default.
- W1982809327 cites W2076878202 @default.
- W1982809327 cites W2078822405 @default.
- W1982809327 cites W2080204887 @default.
- W1982809327 cites W2080525703 @default.
- W1982809327 cites W2084492277 @default.
- W1982809327 cites W2085898697 @default.
- W1982809327 cites W2090494419 @default.
- W1982809327 cites W2091825826 @default.
- W1982809327 cites W2313808013 @default.
- W1982809327 cites W2335015059 @default.
- W1982809327 cites W4232572085 @default.
- W1982809327 cites W4237656102 @default.
- W1982809327 cites W4254142468 @default.
- W1982809327 cites W9333421 @default.
- W1982809327 doi "https://doi.org/10.1103/physrev.132.144" @default.
- W1982809327 hasPublicationYear "1963" @default.
- W1982809327 type Work @default.
- W1982809327 sameAs 1982809327 @default.
- W1982809327 citedByCount "71" @default.
- W1982809327 countsByYear W19828093272013 @default.
- W1982809327 countsByYear W19828093272014 @default.
- W1982809327 countsByYear W19828093272018 @default.
- W1982809327 countsByYear W19828093272023 @default.
- W1982809327 crossrefType "journal-article" @default.
- W1982809327 hasAuthorship W1982809327A5010263688 @default.
- W1982809327 hasAuthorship W1982809327A5017636218 @default.
- W1982809327 hasAuthorship W1982809327A5018568783 @default.
- W1982809327 hasConcept C115260700 @default.
- W1982809327 hasConcept C121332964 @default.
- W1982809327 hasConcept C124712363 @default.
- W1982809327 hasConcept C155355069 @default.
- W1982809327 hasConcept C184050105 @default.
- W1982809327 hasConcept C26873012 @default.
- W1982809327 hasConcept C32546565 @default.
- W1982809327 hasConcept C46141821 @default.
- W1982809327 hasConcept C62520636 @default.
- W1982809327 hasConcept C85725439 @default.
- W1982809327 hasConceptScore W1982809327C115260700 @default.
- W1982809327 hasConceptScore W1982809327C121332964 @default.
- W1982809327 hasConceptScore W1982809327C124712363 @default.
- W1982809327 hasConceptScore W1982809327C155355069 @default.
- W1982809327 hasConceptScore W1982809327C184050105 @default.
- W1982809327 hasConceptScore W1982809327C26873012 @default.
- W1982809327 hasConceptScore W1982809327C32546565 @default.
- W1982809327 hasConceptScore W1982809327C46141821 @default.
- W1982809327 hasConceptScore W1982809327C62520636 @default.
- W1982809327 hasConceptScore W1982809327C85725439 @default.
- W1982809327 hasIssue "1" @default.
- W1982809327 hasLocation W19828093271 @default.
- W1982809327 hasOpenAccess W1982809327 @default.
- W1982809327 hasPrimaryLocation W19828093271 @default.
- W1982809327 hasRelatedWork W159856766 @default.
- W1982809327 hasRelatedWork W1653653181 @default.
- W1982809327 hasRelatedWork W1979505916 @default.
- W1982809327 hasRelatedWork W1988337890 @default.
- W1982809327 hasRelatedWork W1998658058 @default.
- W1982809327 hasRelatedWork W2001739340 @default.
- W1982809327 hasRelatedWork W2036402007 @default.
- W1982809327 hasRelatedWork W2082387786 @default.
- W1982809327 hasRelatedWork W2198832488 @default.
- W1982809327 hasRelatedWork W4239707241 @default.