Matches in SemOpenAlex for { <https://semopenalex.org/work/W1982838330> ?p ?o ?g. }
- W1982838330 endingPage "93" @default.
- W1982838330 startingPage "75" @default.
- W1982838330 abstract "This paper describes the variations in silicon concentrations in UK waters for a wide range of catchment systems (near pristine, rural, and agricultural and urban impacted systems). The paper largely concerns silicon levels in streams, rivers and lakes based on extensive data collected as part of several research and monitoring initiatives of national and international standing. For a detailed study of an upland catchment in mid-Wales, information on atmospheric inputs and groundwater chemistries is provided to supply background information to cross link to the surface water chemistry. Several hundred streams/rivers and lakes are dealt with within the study, dealing with the main types of freshwater riverine and lacustrine environments. The streams/rivers vary from small ephemeral runoff to the major rivers of the UK. The geographical location of sites vary from local sites in mid-Wales, to regional studies across Scotland, to the major eastern UK rivers entering the North Sea and to acid sensitive upland sites across Wales, the English Lake District, Scotland and Northern Ireland. The surface waters range in silicon concentration from 0 to 19 mg-Si l−1 (average for individual sites vary between 0.7 and 7.6 mg-Si l−1) and there are some clear variations which link to two primary processes (1) the relative inputs of groundwaters enriched in silicon and near surface waters more depleted in silicon and (2) plankton uptake of silicon during the summer months under baseflow conditions. Thermodynamic analysis reveals that the waters are approximately saturated with respect to either quartz or chalcedony except for two circumstances when undersaturation occurs. Firstly, undersaturation occurs at pH less than 5.5 in the upland areas and this is because the waters are mainly sourced from the acidic organic soils which are depleted in inorganic minerals. Secondly, undersaturation occurs in the lowland rivers when biological activity is at its highest and this leads to silicon removal from the water column. Quartz equilibrium can be approached (at pH>5.5) mainly within the upland systems which are not aquifer recharge dominated. However, for the lowland systems that are groundwater recharge dominated, it is chalcedony saturation which is approached, and such saturation is often observed within groundwaters. Similar patterns of undersaturation in response to biological uptake are seen in lakes and the extent of silicon depletion increases with biological productivity. Chalcedony oversaturation can occur for some UK rivers under baseflow conditions and this probably links to a higher rate of weathering." @default.
- W1982838330 created "2016-06-24" @default.
- W1982838330 creator A5010130357 @default.
- W1982838330 creator A5010522836 @default.
- W1982838330 creator A5029336654 @default.
- W1982838330 creator A5034429711 @default.
- W1982838330 creator A5037625203 @default.
- W1982838330 creator A5064055726 @default.
- W1982838330 creator A5072670561 @default.
- W1982838330 creator A5074247620 @default.
- W1982838330 date "2005-03-01" @default.
- W1982838330 modified "2023-09-28" @default.
- W1982838330 title "Silicon concentrations in UK surface waters" @default.
- W1982838330 cites W1481765588 @default.
- W1982838330 cites W1649126752 @default.
- W1982838330 cites W1836344216 @default.
- W1982838330 cites W184703620 @default.
- W1982838330 cites W1969817833 @default.
- W1982838330 cites W1972119100 @default.
- W1982838330 cites W1976055343 @default.
- W1982838330 cites W1977432249 @default.
- W1982838330 cites W1979270267 @default.
- W1982838330 cites W1981997430 @default.
- W1982838330 cites W1986479879 @default.
- W1982838330 cites W1993791029 @default.
- W1982838330 cites W2008615754 @default.
- W1982838330 cites W2027689731 @default.
- W1982838330 cites W2037608304 @default.
- W1982838330 cites W2040070307 @default.
- W1982838330 cites W2068370782 @default.
- W1982838330 cites W2069089026 @default.
- W1982838330 cites W2075532561 @default.
- W1982838330 cites W2076952415 @default.
- W1982838330 cites W2092282905 @default.
- W1982838330 cites W2093764694 @default.
- W1982838330 cites W2111436971 @default.
- W1982838330 cites W2137526314 @default.
- W1982838330 doi "https://doi.org/10.1016/j.jhydrol.2004.07.023" @default.
- W1982838330 hasPublicationYear "2005" @default.
- W1982838330 type Work @default.
- W1982838330 sameAs 1982838330 @default.
- W1982838330 citedByCount "48" @default.
- W1982838330 countsByYear W19828383302012 @default.
- W1982838330 countsByYear W19828383302013 @default.
- W1982838330 countsByYear W19828383302014 @default.
- W1982838330 countsByYear W19828383302015 @default.
- W1982838330 countsByYear W19828383302016 @default.
- W1982838330 countsByYear W19828383302017 @default.
- W1982838330 countsByYear W19828383302018 @default.
- W1982838330 countsByYear W19828383302020 @default.
- W1982838330 countsByYear W19828383302021 @default.
- W1982838330 countsByYear W19828383302022 @default.
- W1982838330 crossrefType "journal-article" @default.
- W1982838330 hasAuthorship W1982838330A5010130357 @default.
- W1982838330 hasAuthorship W1982838330A5010522836 @default.
- W1982838330 hasAuthorship W1982838330A5029336654 @default.
- W1982838330 hasAuthorship W1982838330A5034429711 @default.
- W1982838330 hasAuthorship W1982838330A5037625203 @default.
- W1982838330 hasAuthorship W1982838330A5064055726 @default.
- W1982838330 hasAuthorship W1982838330A5072670561 @default.
- W1982838330 hasAuthorship W1982838330A5074247620 @default.
- W1982838330 hasConcept C108469399 @default.
- W1982838330 hasConcept C111368507 @default.
- W1982838330 hasConcept C126645576 @default.
- W1982838330 hasConcept C127313418 @default.
- W1982838330 hasConcept C159985019 @default.
- W1982838330 hasConcept C187320778 @default.
- W1982838330 hasConcept C18903297 @default.
- W1982838330 hasConcept C192562407 @default.
- W1982838330 hasConcept C204323151 @default.
- W1982838330 hasConcept C205649164 @default.
- W1982838330 hasConcept C31258907 @default.
- W1982838330 hasConcept C39432304 @default.
- W1982838330 hasConcept C41008148 @default.
- W1982838330 hasConcept C42090638 @default.
- W1982838330 hasConcept C50477045 @default.
- W1982838330 hasConcept C53739315 @default.
- W1982838330 hasConcept C58640448 @default.
- W1982838330 hasConcept C76177295 @default.
- W1982838330 hasConcept C76856003 @default.
- W1982838330 hasConcept C76886044 @default.
- W1982838330 hasConcept C76947770 @default.
- W1982838330 hasConcept C8625798 @default.
- W1982838330 hasConcept C86803240 @default.
- W1982838330 hasConcept C87717796 @default.
- W1982838330 hasConceptScore W1982838330C108469399 @default.
- W1982838330 hasConceptScore W1982838330C111368507 @default.
- W1982838330 hasConceptScore W1982838330C126645576 @default.
- W1982838330 hasConceptScore W1982838330C127313418 @default.
- W1982838330 hasConceptScore W1982838330C159985019 @default.
- W1982838330 hasConceptScore W1982838330C187320778 @default.
- W1982838330 hasConceptScore W1982838330C18903297 @default.
- W1982838330 hasConceptScore W1982838330C192562407 @default.
- W1982838330 hasConceptScore W1982838330C204323151 @default.
- W1982838330 hasConceptScore W1982838330C205649164 @default.
- W1982838330 hasConceptScore W1982838330C31258907 @default.
- W1982838330 hasConceptScore W1982838330C39432304 @default.
- W1982838330 hasConceptScore W1982838330C41008148 @default.