Matches in SemOpenAlex for { <https://semopenalex.org/work/W1982957550> ?p ?o ?g. }
- W1982957550 endingPage "8645" @default.
- W1982957550 startingPage "8621" @default.
- W1982957550 abstract "Organ motion is a major problem for any dynamic radiotherapy delivery technique, and is particularly so for spot scanned proton therapy. On the other hand, the use of narrow, magnetically deflected proton pencil beams is potentially an ideal delivery technique for tracking tumour motion on-line. At PSI, our new Gantry is equipped with a Beams Eye View (BEV) imaging system which will be able to acquire 2D x-ray images in fluoroscopy mode during treatment delivery. However, besides precisely tracking motion from BEVs, it is also essential to obtain information on the 3D motion vector throughout the whole region of interest, and any sparsely acquired surrogate motion is generally not sufficient to describe the deformable behaviour of the whole volume in three dimensions. In this study, we propose a method by which 3D deformable motions can be estimated from surrogate motions obtained using this monoscopic imaging system. The method assumes that example motions over a number of breathing cycles can be acquired before treatment for each patient using 4DMRI. In this study, for each of 11 different subjects, 100 continuous breathing cycles have been extracted from extended 4DMRI studies in the liver and then subject specific motion models have been built using principle component analysis (PCA). To simulate treatment conditions, a different set of 30 continuous breathing cycles from the same subjects have then been used to generate a set of simulated 4DCT data sets (so-called 4DCT(MRI) data sets), from which time-resolved digitally reconstructed radiographs (DRRs) were calculated using the BEV geometry for three treatment fields respectively. From these DRRs, surrogate motions from fiducial markers or the diaphragm have been used as a predictor to estimate 3D motions in the liver region for each subject. The prediction results have been directly compared to the 'ground truth' motions extracted from the same 30 breath cycles of the originating 4DMRI data set. Averaged over all 11 subjects, and for three field directions, for 99% of predicted positions, median (max) error magnitudes of better than 2.63(5.67) mm can be achieved when fiducial markers was chosen as predictor. Furthermore, three single fields, 4D dose calculations have been performed as a verification tool to evaluate the prediction performance of such a model in the context of scanned proton beam therapy. These show a high similarity between plans considering either PCA predicted motion or ground truth motion, where absolute dose differences of more than 5% (V(dosediff = 5%)) occur for the worst field scenarios in only 3.61% (median) or 15.13% (max) of dose calculation points in the irradiated volume. The magnitude of these dose differences were insignificantly dependent on whether surrogate motions were tracked by monoscopic or stereoscopic imaging systems, or whether fiducial markers or diaphragm were chosen as surrogate. This study has demonstrated that on-line deformable motion reconstruction from sparse surrogate motions is feasible, even when using only a monoscopic imaging system. In addition, it has also been found that diaphragm motion can be considered as a good predictor for respiratory deformable liver motion prediction, implying that fiducial markers might not be compulsory if used in conjunction with a patient specific PCA based model." @default.
- W1982957550 created "2016-06-24" @default.
- W1982957550 creator A5017607013 @default.
- W1982957550 creator A5037165539 @default.
- W1982957550 creator A5050287369 @default.
- W1982957550 creator A5060132103 @default.
- W1982957550 creator A5088018749 @default.
- W1982957550 date "2013-11-21" @default.
- W1982957550 modified "2023-10-13" @default.
- W1982957550 title "Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging" @default.
- W1982957550 cites W1972581749 @default.
- W1982957550 cites W1980707615 @default.
- W1982957550 cites W1982155610 @default.
- W1982957550 cites W1989885502 @default.
- W1982957550 cites W1993223737 @default.
- W1982957550 cites W1994583520 @default.
- W1982957550 cites W1994749870 @default.
- W1982957550 cites W1995766420 @default.
- W1982957550 cites W1996776789 @default.
- W1982957550 cites W1997771401 @default.
- W1982957550 cites W2005666433 @default.
- W1982957550 cites W2009559419 @default.
- W1982957550 cites W2009682197 @default.
- W1982957550 cites W2012825335 @default.
- W1982957550 cites W2015593424 @default.
- W1982957550 cites W2019041348 @default.
- W1982957550 cites W2024973100 @default.
- W1982957550 cites W2025293737 @default.
- W1982957550 cites W2025553206 @default.
- W1982957550 cites W2025678844 @default.
- W1982957550 cites W2034403811 @default.
- W1982957550 cites W2041332882 @default.
- W1982957550 cites W2044041509 @default.
- W1982957550 cites W2045348406 @default.
- W1982957550 cites W2048152878 @default.
- W1982957550 cites W2051065438 @default.
- W1982957550 cites W2056481412 @default.
- W1982957550 cites W2059950254 @default.
- W1982957550 cites W2060760977 @default.
- W1982957550 cites W2062512576 @default.
- W1982957550 cites W2063508442 @default.
- W1982957550 cites W2073708032 @default.
- W1982957550 cites W2078067019 @default.
- W1982957550 cites W2079474469 @default.
- W1982957550 cites W2084675397 @default.
- W1982957550 cites W2088231827 @default.
- W1982957550 cites W2109498222 @default.
- W1982957550 cites W2113576511 @default.
- W1982957550 cites W2129065779 @default.
- W1982957550 cites W2131325511 @default.
- W1982957550 cites W2139259555 @default.
- W1982957550 cites W2143101233 @default.
- W1982957550 cites W2143726982 @default.
- W1982957550 cites W2150458683 @default.
- W1982957550 cites W2158453486 @default.
- W1982957550 cites W2221432021 @default.
- W1982957550 cites W4236720647 @default.
- W1982957550 cites W4292935249 @default.
- W1982957550 doi "https://doi.org/10.1088/0031-9155/58/24/8621" @default.
- W1982957550 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24256693" @default.
- W1982957550 hasPublicationYear "2013" @default.
- W1982957550 type Work @default.
- W1982957550 sameAs 1982957550 @default.
- W1982957550 citedByCount "32" @default.
- W1982957550 countsByYear W19829575502014 @default.
- W1982957550 countsByYear W19829575502015 @default.
- W1982957550 countsByYear W19829575502016 @default.
- W1982957550 countsByYear W19829575502017 @default.
- W1982957550 countsByYear W19829575502018 @default.
- W1982957550 countsByYear W19829575502019 @default.
- W1982957550 countsByYear W19829575502020 @default.
- W1982957550 countsByYear W19829575502021 @default.
- W1982957550 countsByYear W19829575502022 @default.
- W1982957550 countsByYear W19829575502023 @default.
- W1982957550 crossrefType "journal-article" @default.
- W1982957550 hasAuthorship W1982957550A5017607013 @default.
- W1982957550 hasAuthorship W1982957550A5037165539 @default.
- W1982957550 hasAuthorship W1982957550A5050287369 @default.
- W1982957550 hasAuthorship W1982957550A5060132103 @default.
- W1982957550 hasAuthorship W1982957550A5088018749 @default.
- W1982957550 hasConcept C104114177 @default.
- W1982957550 hasConcept C105702510 @default.
- W1982957550 hasConcept C120665830 @default.
- W1982957550 hasConcept C121332964 @default.
- W1982957550 hasConcept C154945302 @default.
- W1982957550 hasConcept C15744967 @default.
- W1982957550 hasConcept C168834538 @default.
- W1982957550 hasConcept C185544564 @default.
- W1982957550 hasConcept C19417346 @default.
- W1982957550 hasConcept C2775936607 @default.
- W1982957550 hasConcept C2776805002 @default.
- W1982957550 hasConcept C2779244869 @default.
- W1982957550 hasConcept C2989005 @default.
- W1982957550 hasConcept C31972630 @default.
- W1982957550 hasConcept C39300077 @default.
- W1982957550 hasConcept C41008148 @default.
- W1982957550 hasConcept C71924100 @default.
- W1982957550 hasConceptScore W1982957550C104114177 @default.