Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983080908> ?p ?o ?g. }
- W1983080908 endingPage "64" @default.
- W1983080908 startingPage "46" @default.
- W1983080908 abstract "Abstract Net Primary Production (NPP) is an important component of the carbon cycle and, among the pools and fluxes that make up the cycle, it is one of the steps that are most accessible to field measurement. While easier than some other steps to measure, direct measurement of NPP is tedious and not practical for large areas and so models are generally used to study the carbon cycle at a global scale. Nevertheless these models require field measurements of NPP for parameterization, calibration and validation. Most NPP data are for relatively small field plots that cannot represent the 0.5° × 0.5° grid cells that are commonly used in global scale models. Furthermore, technical difficulties generally restrict NPP measurements to aboveground parts and sometimes do not even include all components of aboveground NPP. Thus direct inter‐comparison between field data obtained in different studies or comparison of these results with coarse resolution model outputs can be misleading. We summarize and present a series of methods that were used by original authors to estimate NPP and how and what we have done to prepare a consistent data set of NPP for 0.5 °grid cells for a range of biomes from these studies. The methods used for estimation of NPP include: (i) aggregation of fine‐scale (plot or stand‐level) vegetation inventory data to larger grid cells, (ii) mapping of grid cells and area weighting of field NPP observations in each mapped class, (iii) direct correlation of extensive data sets of ground measurements with remotely sensed spectral vegetation indices, (iv) local modeling of NPP using key independent variables, for which maps are available at the scale of the grid cell, and (v) regression analysis to link productivity with controlling environmental variables. For a few grid cells whose NPP were obtained for multiple years, temporal analysis was conducted. The grid cells are grouped to the biome level and are compared with existing compilations of field NPP and the results of the Miami potential NPP model. Mean NPP was similar to the well‐known compilation of Whittaker and Likens, except for temperate evergreen needle‐leaved forest, woodland, and shrubland. The grid cell datasets are a contribution to the International Geosphere‐Biosphere Programme (IGBP) Data and Information System (DIS) Global Primary Production Data Initiative (GPPDI). The full dataset currently contains 3654 cells (including replicate measurements) developed from 15 studies representing NPP in croplands, sparse vegetation, shrub lands, grasslands, and forests worldwide. An edited subset consists of 2335 cells in which outliers were removed and all replicate measurements were averaged for each unique geographical location. Most of the data incorporated into GPPDI were wholly or partly developed by participants in the GPPDI, in addition to the present authors. These studies are gathered together here to provide a consistent account of the grid cell component of GPPDI and an analysis of the entire data set. The datasets have been deposited in an IGBP‐DIS GPPDI database ( http://daacl.esd.ornl.gov/npq/GPPDI/Combined_GPPDI_des.html )." @default.
- W1983080908 created "2016-06-24" @default.
- W1983080908 creator A5020912338 @default.
- W1983080908 creator A5062701453 @default.
- W1983080908 creator A5088635348 @default.
- W1983080908 date "2002-12-13" @default.
- W1983080908 modified "2023-10-15" @default.
- W1983080908 title "Terrestrial net primary production estimates for 0.5° grid cells from field observations-a contribution to global biogeochemical modeling" @default.
- W1983080908 cites W1487795913 @default.
- W1983080908 cites W1504272238 @default.
- W1983080908 cites W1551788457 @default.
- W1983080908 cites W1891540150 @default.
- W1983080908 cites W1967631019 @default.
- W1983080908 cites W1974734701 @default.
- W1983080908 cites W1985973940 @default.
- W1983080908 cites W1989074151 @default.
- W1983080908 cites W1992014894 @default.
- W1983080908 cites W1996626298 @default.
- W1983080908 cites W2002173751 @default.
- W1983080908 cites W2008075133 @default.
- W1983080908 cites W2015663015 @default.
- W1983080908 cites W2021306101 @default.
- W1983080908 cites W2047207689 @default.
- W1983080908 cites W2048119919 @default.
- W1983080908 cites W2064517850 @default.
- W1983080908 cites W2065559553 @default.
- W1983080908 cites W2067178186 @default.
- W1983080908 cites W2068451607 @default.
- W1983080908 cites W2069981052 @default.
- W1983080908 cites W2074120751 @default.
- W1983080908 cites W2076823768 @default.
- W1983080908 cites W2084344831 @default.
- W1983080908 cites W2088477878 @default.
- W1983080908 cites W2093511622 @default.
- W1983080908 cites W2098262287 @default.
- W1983080908 cites W2117581799 @default.
- W1983080908 cites W2127486632 @default.
- W1983080908 cites W2133488074 @default.
- W1983080908 cites W2136483781 @default.
- W1983080908 cites W2138408852 @default.
- W1983080908 cites W2152865972 @default.
- W1983080908 cites W2154409236 @default.
- W1983080908 cites W2161169336 @default.
- W1983080908 cites W2166378666 @default.
- W1983080908 cites W2207468033 @default.
- W1983080908 cites W2255779468 @default.
- W1983080908 cites W2330946153 @default.
- W1983080908 cites W2426847349 @default.
- W1983080908 cites W2970731299 @default.
- W1983080908 cites W4214916512 @default.
- W1983080908 cites W760812393 @default.
- W1983080908 doi "https://doi.org/10.1046/j.1365-2486.2003.00534.x" @default.
- W1983080908 hasPublicationYear "2002" @default.
- W1983080908 type Work @default.
- W1983080908 sameAs 1983080908 @default.
- W1983080908 citedByCount "94" @default.
- W1983080908 countsByYear W19830809082012 @default.
- W1983080908 countsByYear W19830809082013 @default.
- W1983080908 countsByYear W19830809082014 @default.
- W1983080908 countsByYear W19830809082015 @default.
- W1983080908 countsByYear W19830809082016 @default.
- W1983080908 countsByYear W19830809082017 @default.
- W1983080908 countsByYear W19830809082018 @default.
- W1983080908 countsByYear W19830809082019 @default.
- W1983080908 countsByYear W19830809082020 @default.
- W1983080908 countsByYear W19830809082021 @default.
- W1983080908 countsByYear W19830809082022 @default.
- W1983080908 countsByYear W19830809082023 @default.
- W1983080908 crossrefType "journal-article" @default.
- W1983080908 hasAuthorship W1983080908A5020912338 @default.
- W1983080908 hasAuthorship W1983080908A5062701453 @default.
- W1983080908 hasAuthorship W1983080908A5088635348 @default.
- W1983080908 hasConcept C107218244 @default.
- W1983080908 hasConcept C110872660 @default.
- W1983080908 hasConcept C142724271 @default.
- W1983080908 hasConcept C154945302 @default.
- W1983080908 hasConcept C187691185 @default.
- W1983080908 hasConcept C18903297 @default.
- W1983080908 hasConcept C202444582 @default.
- W1983080908 hasConcept C205649164 @default.
- W1983080908 hasConcept C24717449 @default.
- W1983080908 hasConcept C2524010 @default.
- W1983080908 hasConcept C2776133958 @default.
- W1983080908 hasConcept C2778755073 @default.
- W1983080908 hasConcept C33923547 @default.
- W1983080908 hasConcept C39432304 @default.
- W1983080908 hasConcept C41008148 @default.
- W1983080908 hasConcept C58489278 @default.
- W1983080908 hasConcept C58640448 @default.
- W1983080908 hasConcept C62649853 @default.
- W1983080908 hasConcept C6939412 @default.
- W1983080908 hasConcept C71924100 @default.
- W1983080908 hasConcept C86803240 @default.
- W1983080908 hasConcept C89920630 @default.
- W1983080908 hasConcept C9652623 @default.
- W1983080908 hasConceptScore W1983080908C107218244 @default.
- W1983080908 hasConceptScore W1983080908C110872660 @default.
- W1983080908 hasConceptScore W1983080908C142724271 @default.