Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983151490> ?p ?o ?g. }
- W1983151490 endingPage "24429" @default.
- W1983151490 startingPage "24409" @default.
- W1983151490 abstract "Volcanic aerosols in the stratosphere produce significant transitory solar and infrared radiative perturbations, which warm the stratosphere, cool the surface and affect stratospheric circulation. In this study, using the Geophysical Fluid Dynamics Laboratory SKYHI general circulation model (GCM) with a high vertical resolution and a recently improved radiative transfer code, we investigate the aerosol radiative forcing and the stratospheric temperature response for the June 15, 1991, Mount Pinatubo eruption, the most well observed and largest volcanic eruption of the 20th Century. The investigation is carried out using an updated, comprehensive monthly and zonal‐mean Pinatubo aerosol spectral optical properties data set. While the near‐infrared solar spectral effects contribute substantially to the total stratospheric heating due to aerosols, over the entire global domain the longwave component exceeds the solar in causing a warming of the lower stratosphere (30–100 hPa). In contrast, the magnitude of the solar perturbation (increased reflection) in the overall surface‐atmosphere radiative heat balance exceeds that due to the longwave (infrared trapping effect). The troposphere affects the stratospheric radiative forcing, mainly because of the dependence of the reflected solar and upward longwave radiation on cloudiness, and this adds to the uncertainty in the calculation of the stratospheric temperature response. A four‐member ensemble of 2‐year GCM integrations (June 1991 to May 1993) were performed using fixed sea surface temperatures and a cloud prediction scheme, one set with and another without the volcanic aerosols. The temperature of the tropical lower stratosphere increases by a statistically significant 3 K, which is almost 1 K less than in previous investigations that employed coarser vertical resolution in the stratosphere, but is still larger than observed. In the low latitudes the evolution of the simulated temperature response mimics that observed only through about the first year. Thereafter, despite a significant aerosol optical depth perturbation in the tropical atmosphere, there is a lack of a signature in the temperature response that can be unambiguously attributed to the Pinatubo aerosols, suggesting other forced or unforced variations (e.g., ozone changes, quasi‐biennial oscillation) occurring in the actual atmosphere which are unaccounted for in the model. In the high latitudes the large interannual variability prohibits a clear quantitative comparison between simulated and observed temperature changes and renders the aerosol‐induced thermal signals statistically insignificant. In the global mean the evolution of the simulated lower stratospheric temperature response is in excellent agreement with the observation for the entire 2‐year period, in contrast to the model‐observation comparison at the low latitudes. This arises because in the global mean the stratospheric response is not sensitive to dynamical adjustments within the atmosphere caused by internal variations, and depends principally on the external radiative forcing caused by the aerosols." @default.
- W1983151490 created "2016-06-24" @default.
- W1983151490 creator A5003095283 @default.
- W1983151490 creator A5004595652 @default.
- W1983151490 creator A5021056331 @default.
- W1983151490 creator A5027635825 @default.
- W1983151490 date "2000-10-01" @default.
- W1983151490 modified "2023-10-13" @default.
- W1983151490 title "Radiative impact of the Mount Pinatubo volcanic eruption: Lower stratospheric response" @default.
- W1983151490 cites W101012238 @default.
- W1983151490 cites W101622081 @default.
- W1983151490 cites W106735989 @default.
- W1983151490 cites W1547067099 @default.
- W1983151490 cites W1674864073 @default.
- W1983151490 cites W1964229459 @default.
- W1983151490 cites W1967263318 @default.
- W1983151490 cites W1969641643 @default.
- W1983151490 cites W1974381974 @default.
- W1983151490 cites W1976421004 @default.
- W1983151490 cites W1976487702 @default.
- W1983151490 cites W1980435925 @default.
- W1983151490 cites W1982364438 @default.
- W1983151490 cites W1982846260 @default.
- W1983151490 cites W1982859475 @default.
- W1983151490 cites W1983166701 @default.
- W1983151490 cites W1983973443 @default.
- W1983151490 cites W1984506816 @default.
- W1983151490 cites W1985998218 @default.
- W1983151490 cites W1987881481 @default.
- W1983151490 cites W1990900389 @default.
- W1983151490 cites W1992223523 @default.
- W1983151490 cites W2003266253 @default.
- W1983151490 cites W2005792056 @default.
- W1983151490 cites W2011838863 @default.
- W1983151490 cites W2014862170 @default.
- W1983151490 cites W2016241302 @default.
- W1983151490 cites W2017183559 @default.
- W1983151490 cites W2017744259 @default.
- W1983151490 cites W2020297738 @default.
- W1983151490 cites W2023523420 @default.
- W1983151490 cites W2024632043 @default.
- W1983151490 cites W2025424009 @default.
- W1983151490 cites W2026270723 @default.
- W1983151490 cites W2026953522 @default.
- W1983151490 cites W2030054815 @default.
- W1983151490 cites W2030639956 @default.
- W1983151490 cites W2033130184 @default.
- W1983151490 cites W2035807572 @default.
- W1983151490 cites W2042731068 @default.
- W1983151490 cites W2058105799 @default.
- W1983151490 cites W2060471393 @default.
- W1983151490 cites W2067538898 @default.
- W1983151490 cites W2070214904 @default.
- W1983151490 cites W2070243545 @default.
- W1983151490 cites W2070840708 @default.
- W1983151490 cites W2073550807 @default.
- W1983151490 cites W2074194969 @default.
- W1983151490 cites W2074269426 @default.
- W1983151490 cites W2075501990 @default.
- W1983151490 cites W2088488427 @default.
- W1983151490 cites W2090272153 @default.
- W1983151490 cites W2091588789 @default.
- W1983151490 cites W2093808168 @default.
- W1983151490 cites W2096814380 @default.
- W1983151490 cites W2099533604 @default.
- W1983151490 cites W2100842007 @default.
- W1983151490 cites W2106981466 @default.
- W1983151490 cites W2113736264 @default.
- W1983151490 cites W2115837614 @default.
- W1983151490 cites W2117082770 @default.
- W1983151490 cites W2120852613 @default.
- W1983151490 cites W2123592518 @default.
- W1983151490 cites W2135108747 @default.
- W1983151490 cites W2148333531 @default.
- W1983151490 cites W2172653344 @default.
- W1983151490 cites W2173251738 @default.
- W1983151490 cites W2496059442 @default.
- W1983151490 cites W3174188363 @default.
- W1983151490 cites W69462782 @default.
- W1983151490 cites W82398484 @default.
- W1983151490 cites W2108456379 @default.
- W1983151490 doi "https://doi.org/10.1029/2000jd900355" @default.
- W1983151490 hasPublicationYear "2000" @default.
- W1983151490 type Work @default.
- W1983151490 sameAs 1983151490 @default.
- W1983151490 citedByCount "85" @default.
- W1983151490 countsByYear W19831514902012 @default.
- W1983151490 countsByYear W19831514902013 @default.
- W1983151490 countsByYear W19831514902014 @default.
- W1983151490 countsByYear W19831514902015 @default.
- W1983151490 countsByYear W19831514902016 @default.
- W1983151490 countsByYear W19831514902017 @default.
- W1983151490 countsByYear W19831514902018 @default.
- W1983151490 countsByYear W19831514902019 @default.
- W1983151490 countsByYear W19831514902020 @default.
- W1983151490 countsByYear W19831514902021 @default.
- W1983151490 countsByYear W19831514902022 @default.
- W1983151490 countsByYear W19831514902023 @default.