Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983169852> ?p ?o ?g. }
- W1983169852 endingPage "152" @default.
- W1983169852 startingPage "130" @default.
- W1983169852 abstract "We study multi-valued elliptic variational inclusions in a bounded domain Ω⊂RN of the form u∈K:0∈Au+∂IK(u)+F(u)+FΓ(u), where A is a second order quasilinear elliptic operator of Leray–Lions type, K is a closed convex subset of some Sobolev space, IK is the indicator function related to K, and ∂IK denoting its subdifferential. The lower order multi-valued operators F and FΓ are generated by multi-valued, upper semicontinuous functions f:Ω×R→2R∖{0̸} and fΓ:Γ×R→2R∖{0̸}, respectively, with Γ⊂∂Ω. Our main goals are as follows: First we provide an existence theory for the above multi-valued variational inequalities. Second, we establish an enclosure and comparison principle based on appropriately defined sub–supersolutions, and prove the existence of extremal solutions. Third, by means of the sub–supersolution method provided here, we are going to show that rather general classes of variational–hemivariational type inequalities turn out to be only subclasses of the above general multi-valued elliptic variational inequalities, which in a way fills a gap in the current literature where these kind of problems are studied independently. Finally, the existence of extremal solutions will allow us to deal with classes of multi-valued function f and fΓ that are neither lower nor upper semicontinuous, which in turn will provide a tool to obtain existence results for variational–hemivariational type inequalities whose Clarke’s generalized directional derivative may, in addition, discontinuously depend on the function we are looking for. This paper, though of surveying nature, provides an analytical framework that allows to present in a unifying way and to extend a number of recent results due to the authors." @default.
- W1983169852 created "2016-06-24" @default.
- W1983169852 creator A5048198457 @default.
- W1983169852 creator A5088003935 @default.
- W1983169852 date "2015-07-01" @default.
- W1983169852 modified "2023-10-18" @default.
- W1983169852 title "Elliptic inequalities with multi-valued operators: Existence, comparison and related variational–hemivariational type inequalities" @default.
- W1983169852 cites W1769059840 @default.
- W1983169852 cites W2033006204 @default.
- W1983169852 cites W2045759664 @default.
- W1983169852 cites W2050684404 @default.
- W1983169852 cites W2052118116 @default.
- W1983169852 cites W2069485711 @default.
- W1983169852 cites W2083171628 @default.
- W1983169852 cites W2119320360 @default.
- W1983169852 cites W2318687442 @default.
- W1983169852 cites W2508658229 @default.
- W1983169852 cites W2513511550 @default.
- W1983169852 cites W2516387155 @default.
- W1983169852 doi "https://doi.org/10.1016/j.na.2014.10.033" @default.
- W1983169852 hasPublicationYear "2015" @default.
- W1983169852 type Work @default.
- W1983169852 sameAs 1983169852 @default.
- W1983169852 citedByCount "13" @default.
- W1983169852 countsByYear W19831698522015 @default.
- W1983169852 countsByYear W19831698522016 @default.
- W1983169852 countsByYear W19831698522017 @default.
- W1983169852 countsByYear W19831698522018 @default.
- W1983169852 countsByYear W19831698522019 @default.
- W1983169852 countsByYear W19831698522021 @default.
- W1983169852 crossrefType "journal-article" @default.
- W1983169852 hasAuthorship W1983169852A5048198457 @default.
- W1983169852 hasAuthorship W1983169852A5088003935 @default.
- W1983169852 hasConcept C10138342 @default.
- W1983169852 hasConcept C104317684 @default.
- W1983169852 hasConcept C112680207 @default.
- W1983169852 hasConcept C134306372 @default.
- W1983169852 hasConcept C14036430 @default.
- W1983169852 hasConcept C145446738 @default.
- W1983169852 hasConcept C157972887 @default.
- W1983169852 hasConcept C158448853 @default.
- W1983169852 hasConcept C161999928 @default.
- W1983169852 hasConcept C162324750 @default.
- W1983169852 hasConcept C17020691 @default.
- W1983169852 hasConcept C182306322 @default.
- W1983169852 hasConcept C185592680 @default.
- W1983169852 hasConcept C18903297 @default.
- W1983169852 hasConcept C200661725 @default.
- W1983169852 hasConcept C202444582 @default.
- W1983169852 hasConcept C2524010 @default.
- W1983169852 hasConcept C2777299769 @default.
- W1983169852 hasConcept C28826006 @default.
- W1983169852 hasConcept C33923547 @default.
- W1983169852 hasConcept C34388435 @default.
- W1983169852 hasConcept C36503486 @default.
- W1983169852 hasConcept C55493867 @default.
- W1983169852 hasConcept C70610323 @default.
- W1983169852 hasConcept C78458016 @default.
- W1983169852 hasConcept C86339819 @default.
- W1983169852 hasConcept C86803240 @default.
- W1983169852 hasConcept C99730327 @default.
- W1983169852 hasConceptScore W1983169852C10138342 @default.
- W1983169852 hasConceptScore W1983169852C104317684 @default.
- W1983169852 hasConceptScore W1983169852C112680207 @default.
- W1983169852 hasConceptScore W1983169852C134306372 @default.
- W1983169852 hasConceptScore W1983169852C14036430 @default.
- W1983169852 hasConceptScore W1983169852C145446738 @default.
- W1983169852 hasConceptScore W1983169852C157972887 @default.
- W1983169852 hasConceptScore W1983169852C158448853 @default.
- W1983169852 hasConceptScore W1983169852C161999928 @default.
- W1983169852 hasConceptScore W1983169852C162324750 @default.
- W1983169852 hasConceptScore W1983169852C17020691 @default.
- W1983169852 hasConceptScore W1983169852C182306322 @default.
- W1983169852 hasConceptScore W1983169852C185592680 @default.
- W1983169852 hasConceptScore W1983169852C18903297 @default.
- W1983169852 hasConceptScore W1983169852C200661725 @default.
- W1983169852 hasConceptScore W1983169852C202444582 @default.
- W1983169852 hasConceptScore W1983169852C2524010 @default.
- W1983169852 hasConceptScore W1983169852C2777299769 @default.
- W1983169852 hasConceptScore W1983169852C28826006 @default.
- W1983169852 hasConceptScore W1983169852C33923547 @default.
- W1983169852 hasConceptScore W1983169852C34388435 @default.
- W1983169852 hasConceptScore W1983169852C36503486 @default.
- W1983169852 hasConceptScore W1983169852C55493867 @default.
- W1983169852 hasConceptScore W1983169852C70610323 @default.
- W1983169852 hasConceptScore W1983169852C78458016 @default.
- W1983169852 hasConceptScore W1983169852C86339819 @default.
- W1983169852 hasConceptScore W1983169852C86803240 @default.
- W1983169852 hasConceptScore W1983169852C99730327 @default.
- W1983169852 hasLocation W19831698521 @default.
- W1983169852 hasOpenAccess W1983169852 @default.
- W1983169852 hasPrimaryLocation W19831698521 @default.
- W1983169852 hasRelatedWork W1964138198 @default.
- W1983169852 hasRelatedWork W1964662789 @default.
- W1983169852 hasRelatedWork W1990595273 @default.
- W1983169852 hasRelatedWork W2174650017 @default.
- W1983169852 hasRelatedWork W2438423475 @default.
- W1983169852 hasRelatedWork W2556570445 @default.