Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983171048> ?p ?o ?g. }
- W1983171048 endingPage "89" @default.
- W1983171048 startingPage "57" @default.
- W1983171048 abstract "In recent years, the theory of compressed sensing has emerged as an alternative for the Shannon sampling theorem, suggesting that compressible signals can be reconstructed from far fewer samples than required by the Shannon sampling theorem. In fact the theory advocates that nonadaptive, “random” functionals are in some sense optimal for this task. However, in practice, compressed sensing is very difficult to implement for large data sets, particularly because the recovery algorithms require significant computational resources. In this work, we present a new alternative method for simultaneous image acquisition and compression called adaptive compressed sampling. We exploit wavelet tree structures found in natural images to replace the “universal” acquisition of incoherent measurements with a direct and fast method for adaptive wavelet tree acquisition. The main advantages of this direct approach are that no complex recovery algorithm is in fact needed and that it allows more control over the compressed image quality, in particular, the sharpness of edges. Our experimental results show, by way of software simulations, that our adaptive algorithms perform better than existing nonadaptive methods in terms of image quality and speed." @default.
- W1983171048 created "2016-06-24" @default.
- W1983171048 creator A5013722821 @default.
- W1983171048 creator A5018306479 @default.
- W1983171048 creator A5080836593 @default.
- W1983171048 date "2012-01-01" @default.
- W1983171048 modified "2023-09-25" @default.
- W1983171048 title "Adaptive Compressed Image Sensing Using Dictionaries" @default.
- W1983171048 cites W1977252496 @default.
- W1983171048 cites W1986931325 @default.
- W1983171048 cites W1995875735 @default.
- W1983171048 cites W2020390700 @default.
- W1983171048 cites W2025831660 @default.
- W1983171048 cites W2028781966 @default.
- W1983171048 cites W2030449718 @default.
- W1983171048 cites W2047201714 @default.
- W1983171048 cites W2049502219 @default.
- W1983171048 cites W2050834445 @default.
- W1983171048 cites W2053691921 @default.
- W1983171048 cites W2069912449 @default.
- W1983171048 cites W2096114449 @default.
- W1983171048 cites W2098602977 @default.
- W1983171048 cites W2101675075 @default.
- W1983171048 cites W2104266187 @default.
- W1983171048 cites W2109357213 @default.
- W1983171048 cites W2114771311 @default.
- W1983171048 cites W2119667497 @default.
- W1983171048 cites W2122548617 @default.
- W1983171048 cites W2124731682 @default.
- W1983171048 cites W2127271355 @default.
- W1983171048 cites W2128989367 @default.
- W1983171048 cites W2129131372 @default.
- W1983171048 cites W2132984323 @default.
- W1983171048 cites W2134929491 @default.
- W1983171048 cites W2138068359 @default.
- W1983171048 cites W2142276208 @default.
- W1983171048 cites W2144064374 @default.
- W1983171048 cites W2145096794 @default.
- W1983171048 cites W2151131483 @default.
- W1983171048 cites W2152328854 @default.
- W1983171048 cites W2153292122 @default.
- W1983171048 cites W2157999599 @default.
- W1983171048 cites W2160979406 @default.
- W1983171048 cites W2161626445 @default.
- W1983171048 cites W2164452299 @default.
- W1983171048 cites W2168796889 @default.
- W1983171048 cites W2289917018 @default.
- W1983171048 cites W2963322354 @default.
- W1983171048 cites W3105340263 @default.
- W1983171048 cites W3125735862 @default.
- W1983171048 cites W4210665207 @default.
- W1983171048 cites W4250955649 @default.
- W1983171048 doi "https://doi.org/10.1137/110820579" @default.
- W1983171048 hasPublicationYear "2012" @default.
- W1983171048 type Work @default.
- W1983171048 sameAs 1983171048 @default.
- W1983171048 citedByCount "65" @default.
- W1983171048 countsByYear W19831710482012 @default.
- W1983171048 countsByYear W19831710482013 @default.
- W1983171048 countsByYear W19831710482014 @default.
- W1983171048 countsByYear W19831710482015 @default.
- W1983171048 countsByYear W19831710482016 @default.
- W1983171048 countsByYear W19831710482017 @default.
- W1983171048 countsByYear W19831710482018 @default.
- W1983171048 countsByYear W19831710482019 @default.
- W1983171048 countsByYear W19831710482020 @default.
- W1983171048 countsByYear W19831710482021 @default.
- W1983171048 countsByYear W19831710482022 @default.
- W1983171048 countsByYear W19831710482023 @default.
- W1983171048 crossrefType "journal-article" @default.
- W1983171048 hasAuthorship W1983171048A5013722821 @default.
- W1983171048 hasAuthorship W1983171048A5018306479 @default.
- W1983171048 hasAuthorship W1983171048A5080836593 @default.
- W1983171048 hasConcept C115961682 @default.
- W1983171048 hasConcept C124851039 @default.
- W1983171048 hasConcept C153180895 @default.
- W1983171048 hasConcept C154945302 @default.
- W1983171048 hasConcept C31972630 @default.
- W1983171048 hasConcept C41008148 @default.
- W1983171048 hasConcept C9417928 @default.
- W1983171048 hasConceptScore W1983171048C115961682 @default.
- W1983171048 hasConceptScore W1983171048C124851039 @default.
- W1983171048 hasConceptScore W1983171048C153180895 @default.
- W1983171048 hasConceptScore W1983171048C154945302 @default.
- W1983171048 hasConceptScore W1983171048C31972630 @default.
- W1983171048 hasConceptScore W1983171048C41008148 @default.
- W1983171048 hasConceptScore W1983171048C9417928 @default.
- W1983171048 hasIssue "1" @default.
- W1983171048 hasLocation W19831710481 @default.
- W1983171048 hasOpenAccess W1983171048 @default.
- W1983171048 hasPrimaryLocation W19831710481 @default.
- W1983171048 hasRelatedWork W2005185696 @default.
- W1983171048 hasRelatedWork W2080322084 @default.
- W1983171048 hasRelatedWork W2161229648 @default.
- W1983171048 hasRelatedWork W2235753890 @default.
- W1983171048 hasRelatedWork W23451984 @default.
- W1983171048 hasRelatedWork W2361114818 @default.
- W1983171048 hasRelatedWork W2993674027 @default.