Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983183227> ?p ?o ?g. }
- W1983183227 endingPage "2428" @default.
- W1983183227 startingPage "2418" @default.
- W1983183227 abstract "The stochastic dynamic programming approach outlined here, makes use of the scenario tree in a back-to-front scheme. The multi-period stochastic problems, related to the subtrees whose root nodes are the starting nodes (i.e., scenario groups), are solved at each given stage along the time horizon. Each subproblem considers the effect of the stochasticity of the uncertain parameters from the periods of the given stage, by using curves that estimate the expected future value (EFV) of the objective function. Each subproblem is solved for a set of reference levels of the variables that also have nonzero elements in any of the previous stages besides the given stage. An appropriate sensitivity analysis of the objective function for each reference level of the linking variables allows us to estimate the EFV curves applicable to the scenario groups from the previous stages, until the curves for the first stage have been computed. An application of the scheme to the problem of production planning with logical constraints is presented. The aim of the problem consists of obtaining the planning of tactical production over the scenarios along the time horizon. The expected total cost is minimized to satisfy the product demand. Some computational experience is reported. The proposed approach compares favorably with a state-of-the-art optimization engine in instances on a very large scale. For quite some time, we have known that traditional methods of deterministic optimization are not suitable to capture the truly dynamic nature of most real-life problems, in view of the fact that the parameters which represent information concerning the future are uncertain. Many of the problems in planning under uncertainty, have logical constraints that require 0–1 variables in their formulation and can be solved via stochastic integer programming using scenario tree analysis. Given the dimensions of the deterministic equivalent model (DEM) of the stochastic problem, certain decomposition approaches can be considered by exploiting the structure of the models. Traditional decomposition schemes, such as the Benders and Lagrangean approaches, do not appear to provide the solution for large-scale problems (mainly in the cardinality of the scenario tree) in affordable computing effort. In this work, a stochastic dynamic programming approach is suggested, which we feel is particularly suited to exploit the scenario tree structure and, therefore, very amenable to finding solutions to very large-scale DEMs. The pilot case used involves a classical tactical production planning problem, where the structure is not exploited by the proposed approach so that it is generally applicable." @default.
- W1983183227 created "2016-06-24" @default.
- W1983183227 creator A5016301623 @default.
- W1983183227 creator A5031215744 @default.
- W1983183227 creator A5033441886 @default.
- W1983183227 date "2009-08-01" @default.
- W1983183227 modified "2023-10-01" @default.
- W1983183227 title "On stochastic dynamic programming for solving large-scale planning problems under uncertainty" @default.
- W1983183227 cites W1969007958 @default.
- W1983183227 cites W1997535114 @default.
- W1983183227 cites W2000183342 @default.
- W1983183227 cites W2019710194 @default.
- W1983183227 cites W2020375747 @default.
- W1983183227 cites W2031440179 @default.
- W1983183227 cites W2050047854 @default.
- W1983183227 cites W2055056167 @default.
- W1983183227 cites W2060552317 @default.
- W1983183227 cites W2064209589 @default.
- W1983183227 cites W2109007386 @default.
- W1983183227 cites W2119016290 @default.
- W1983183227 cites W2136558239 @default.
- W1983183227 cites W2142714854 @default.
- W1983183227 cites W2162219800 @default.
- W1983183227 cites W2164189122 @default.
- W1983183227 cites W2169844655 @default.
- W1983183227 cites W2495956339 @default.
- W1983183227 cites W4256185527 @default.
- W1983183227 cites W650854417 @default.
- W1983183227 doi "https://doi.org/10.1016/j.cor.2008.09.009" @default.
- W1983183227 hasPublicationYear "2009" @default.
- W1983183227 type Work @default.
- W1983183227 sameAs 1983183227 @default.
- W1983183227 citedByCount "47" @default.
- W1983183227 countsByYear W19831832272012 @default.
- W1983183227 countsByYear W19831832272013 @default.
- W1983183227 countsByYear W19831832272014 @default.
- W1983183227 countsByYear W19831832272015 @default.
- W1983183227 countsByYear W19831832272016 @default.
- W1983183227 countsByYear W19831832272017 @default.
- W1983183227 countsByYear W19831832272018 @default.
- W1983183227 countsByYear W19831832272019 @default.
- W1983183227 countsByYear W19831832272020 @default.
- W1983183227 countsByYear W19831832272021 @default.
- W1983183227 countsByYear W19831832272022 @default.
- W1983183227 countsByYear W19831832272023 @default.
- W1983183227 crossrefType "journal-article" @default.
- W1983183227 hasAuthorship W1983183227A5016301623 @default.
- W1983183227 hasAuthorship W1983183227A5031215744 @default.
- W1983183227 hasAuthorship W1983183227A5033441886 @default.
- W1983183227 hasConcept C113174947 @default.
- W1983183227 hasConcept C121332964 @default.
- W1983183227 hasConcept C126255220 @default.
- W1983183227 hasConcept C127413603 @default.
- W1983183227 hasConcept C134306372 @default.
- W1983183227 hasConcept C137631369 @default.
- W1983183227 hasConcept C14036430 @default.
- W1983183227 hasConcept C177264268 @default.
- W1983183227 hasConcept C199360897 @default.
- W1983183227 hasConcept C21200559 @default.
- W1983183227 hasConcept C24326235 @default.
- W1983183227 hasConcept C2778755073 @default.
- W1983183227 hasConcept C28761237 @default.
- W1983183227 hasConcept C33923547 @default.
- W1983183227 hasConcept C37404715 @default.
- W1983183227 hasConcept C41008148 @default.
- W1983183227 hasConcept C62520636 @default.
- W1983183227 hasConcept C78458016 @default.
- W1983183227 hasConcept C86803240 @default.
- W1983183227 hasConceptScore W1983183227C113174947 @default.
- W1983183227 hasConceptScore W1983183227C121332964 @default.
- W1983183227 hasConceptScore W1983183227C126255220 @default.
- W1983183227 hasConceptScore W1983183227C127413603 @default.
- W1983183227 hasConceptScore W1983183227C134306372 @default.
- W1983183227 hasConceptScore W1983183227C137631369 @default.
- W1983183227 hasConceptScore W1983183227C14036430 @default.
- W1983183227 hasConceptScore W1983183227C177264268 @default.
- W1983183227 hasConceptScore W1983183227C199360897 @default.
- W1983183227 hasConceptScore W1983183227C21200559 @default.
- W1983183227 hasConceptScore W1983183227C24326235 @default.
- W1983183227 hasConceptScore W1983183227C2778755073 @default.
- W1983183227 hasConceptScore W1983183227C28761237 @default.
- W1983183227 hasConceptScore W1983183227C33923547 @default.
- W1983183227 hasConceptScore W1983183227C37404715 @default.
- W1983183227 hasConceptScore W1983183227C41008148 @default.
- W1983183227 hasConceptScore W1983183227C62520636 @default.
- W1983183227 hasConceptScore W1983183227C78458016 @default.
- W1983183227 hasConceptScore W1983183227C86803240 @default.
- W1983183227 hasIssue "8" @default.
- W1983183227 hasLocation W19831832271 @default.
- W1983183227 hasOpenAccess W1983183227 @default.
- W1983183227 hasPrimaryLocation W19831832271 @default.
- W1983183227 hasRelatedWork W1983183227 @default.
- W1983183227 hasRelatedWork W1988404040 @default.
- W1983183227 hasRelatedWork W2034201609 @default.
- W1983183227 hasRelatedWork W2060617991 @default.
- W1983183227 hasRelatedWork W2110596560 @default.
- W1983183227 hasRelatedWork W2147107304 @default.
- W1983183227 hasRelatedWork W2263747200 @default.