Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983243776> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W1983243776 endingPage "3" @default.
- W1983243776 startingPage "1" @default.
- W1983243776 abstract "2014 We discuss topics related to Josephson effects where the theoretical situation is complicated, and experiments still not in a satisfactory stage. These are : 1. the appearance of a new dissipative cos ~ term, where ~ is the phase difference between the two supraconductors, 2. the microwave response of a Josephson diode at photon energies near the energy gap, 3. the effect of microwaves on critical current in the so-called Dayem bridges. INTRODUCTION TO THE JOSEPHSON EFFECT. The Josephson effect is now more than ten years old [1] and this conference on « detection and emission of electromagnetic radiation with Josephson junctions » indicates well that many applications of the effect are actively studied. The basic physics of the effect are well known now, using a two fluid model, with a pair superconducting current and a quasiparticle normal current. These two currents are not interacting as in the simple two fluid model. Consider two identical superconductors separated by a thin dielectric layer of thickness 1 lying in the XY plane. Josephson description of the barrier is based on a two dimensional field qJ(x, y, t) representing the increase in the phase of the order parameter 03C8 on crossing the barrier. is the order parameter introduced by Ginzburg and Landau whose square is proportional to the number of superconducting electron pairs. The derivatives of c are related to the electromagnetic fields E and H in the junction : where V is the voltage across the dielectric and d = 2 A + 1, 03BB the magnetic field penetration depth. The phase c determines also the supercurrent flowing across the barrier and the total current is : (*) Laboratoire associe au Centre National de la Recherche Scientifique. The first term represents the supercurrent, the second is the quasiparticle current. These equations are sufficient to explain the main phenomena predicted by Josephson and later observed. Another useful presentation has been given by Aslamazov and Larkin [2]. In their model they treat the junction as a two phase region where the amplitude of the separate phases is strongly position dependent. Thus the wave function is composed of two terms : f (x) goes to unity in superconductor 1 and 0 in superconductor 2, 03C80 is the amplitude far from the junction. Defining the current in terms of a gradient operator, the current is proportional to #E fvf sin (~1 ~2) for the supercurrent and ~f03C3V for the quasiparticle current. Aslamazov and Larkin’s representation is very useful in the case of a resistively shunted junction. Recently Notarys, Yu and Mercereau [3] have generalized this treatment, in the case of a high current density junction, by allowing the phase to be also a function of position ({J = ({J(x). In the supercurrent a new cos (({Ji ({J2) term appears and : This new supercurrent term is important for a high current density junction. This summarizes the two useful models in the classical regime. We will now present cases where the Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/rphysap:01974009010100" @default.
- W1983243776 created "2016-06-24" @default.
- W1983243776 creator A5066230869 @default.
- W1983243776 date "1974-01-01" @default.
- W1983243776 modified "2023-09-26" @default.
- W1983243776 title "On the Josephson effect" @default.
- W1983243776 cites W1980053779 @default.
- W1983243776 cites W2025625787 @default.
- W1983243776 cites W2039914849 @default.
- W1983243776 cites W2092781417 @default.
- W1983243776 cites W2138995333 @default.
- W1983243776 cites W2566706182 @default.
- W1983243776 doi "https://doi.org/10.1051/rphysap:01974009010100" @default.
- W1983243776 hasPublicationYear "1974" @default.
- W1983243776 type Work @default.
- W1983243776 sameAs 1983243776 @default.
- W1983243776 citedByCount "0" @default.
- W1983243776 crossrefType "journal-article" @default.
- W1983243776 hasAuthorship W1983243776A5066230869 @default.
- W1983243776 hasBestOaLocation W19832437762 @default.
- W1983243776 hasConcept C12038964 @default.
- W1983243776 hasConcept C121332964 @default.
- W1983243776 hasConcept C26873012 @default.
- W1983243776 hasConcept C41008148 @default.
- W1983243776 hasConcept C54101563 @default.
- W1983243776 hasConceptScore W1983243776C12038964 @default.
- W1983243776 hasConceptScore W1983243776C121332964 @default.
- W1983243776 hasConceptScore W1983243776C26873012 @default.
- W1983243776 hasConceptScore W1983243776C41008148 @default.
- W1983243776 hasConceptScore W1983243776C54101563 @default.
- W1983243776 hasIssue "1" @default.
- W1983243776 hasLocation W19832437761 @default.
- W1983243776 hasLocation W19832437762 @default.
- W1983243776 hasLocation W19832437763 @default.
- W1983243776 hasLocation W19832437764 @default.
- W1983243776 hasOpenAccess W1983243776 @default.
- W1983243776 hasPrimaryLocation W19832437761 @default.
- W1983243776 hasRelatedWork W2000201701 @default.
- W1983243776 hasRelatedWork W2067584590 @default.
- W1983243776 hasRelatedWork W2329885366 @default.
- W1983243776 hasRelatedWork W2748952813 @default.
- W1983243776 hasRelatedWork W2899084033 @default.
- W1983243776 hasRelatedWork W2935759653 @default.
- W1983243776 hasRelatedWork W3105167352 @default.
- W1983243776 hasRelatedWork W54078636 @default.
- W1983243776 hasRelatedWork W1501425562 @default.
- W1983243776 hasRelatedWork W2954470139 @default.
- W1983243776 hasVolume "9" @default.
- W1983243776 isParatext "false" @default.
- W1983243776 isRetracted "false" @default.
- W1983243776 magId "1983243776" @default.
- W1983243776 workType "article" @default.