Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983313287> ?p ?o ?g. }
- W1983313287 endingPage "203" @default.
- W1983313287 startingPage "192" @default.
- W1983313287 abstract "Manual scoring of sleep spindles can be very time-consuming, and achieving accurate manual scoring on a long-term recording requires high and sustained levels of vigilance, which makes it a highly demanding task with the associated risk of decreased diagnosis accuracy. Although automatic spindle detection would be attractive, most available algorithms are sensitive to variations in spindle amplitude and frequency that occur between both subjects and derivations, reducing their effectiveness. We propose here an algorithm that models the amplitude–frequency spindle distribution with a bivariate normal distribution (one normal model per derivation). Subsequently, spindles are detected when their amplitude–frequency characteristics are included within a given tolerance interval of the corresponding model. As a consequence, spindle detection is not directly based on amplitude and frequency thresholds, but instead on a spindle distribution model that is automatically adapted to each individual subject and derivation. The algorithm was first assessed against the scoring of one sleep scoring expert on EEG samples from seven healthy children. Afterward, a second study compared performance of two additional experts versus the algorithm on a dataset of six EEG samples from adult patients suffering from different pathologies, to submit the method to more challenging and clinically realistic conditions. Smaller and shorter spindles were more difficult to evaluate, as false positives and false negatives showed lower amplitude and smaller length than true positives. In both studies, normal modelling enhanced performance compared to fixed amplitude and frequency thresholds. Normal modelling is therefore attractive, as it enhances spindle detection quality." @default.
- W1983313287 created "2016-06-24" @default.
- W1983313287 creator A5004092209 @default.
- W1983313287 creator A5018510897 @default.
- W1983313287 creator A5024041489 @default.
- W1983313287 creator A5030011660 @default.
- W1983313287 creator A5052532082 @default.
- W1983313287 creator A5091780864 @default.
- W1983313287 date "2013-04-01" @default.
- W1983313287 modified "2023-09-23" @default.
- W1983313287 title "Sleep spindle detection through amplitude–frequency normal modelling" @default.
- W1983313287 cites W1868622096 @default.
- W1983313287 cites W189888755 @default.
- W1983313287 cites W1965969754 @default.
- W1983313287 cites W1969679533 @default.
- W1983313287 cites W1970593689 @default.
- W1983313287 cites W1973108342 @default.
- W1983313287 cites W1991046527 @default.
- W1983313287 cites W1991886610 @default.
- W1983313287 cites W1991934169 @default.
- W1983313287 cites W1992510645 @default.
- W1983313287 cites W1993230712 @default.
- W1983313287 cites W1999853356 @default.
- W1983313287 cites W2008132301 @default.
- W1983313287 cites W2012446274 @default.
- W1983313287 cites W2032156141 @default.
- W1983313287 cites W2039505601 @default.
- W1983313287 cites W2040756743 @default.
- W1983313287 cites W2040927178 @default.
- W1983313287 cites W2050204299 @default.
- W1983313287 cites W2050947130 @default.
- W1983313287 cites W2054982099 @default.
- W1983313287 cites W2065301342 @default.
- W1983313287 cites W2075542002 @default.
- W1983313287 cites W2077709426 @default.
- W1983313287 cites W2078675930 @default.
- W1983313287 cites W2081561019 @default.
- W1983313287 cites W2082198450 @default.
- W1983313287 cites W2084228140 @default.
- W1983313287 cites W2090832101 @default.
- W1983313287 cites W2090927324 @default.
- W1983313287 cites W2096117871 @default.
- W1983313287 cites W2103576720 @default.
- W1983313287 cites W2106935171 @default.
- W1983313287 cites W2115235944 @default.
- W1983313287 cites W2130947713 @default.
- W1983313287 cites W2138844263 @default.
- W1983313287 cites W2139968116 @default.
- W1983313287 cites W2148263544 @default.
- W1983313287 cites W2158210703 @default.
- W1983313287 cites W2160018849 @default.
- W1983313287 cites W2163500734 @default.
- W1983313287 cites W2169643124 @default.
- W1983313287 cites W4235124186 @default.
- W1983313287 doi "https://doi.org/10.1016/j.jneumeth.2013.01.015" @default.
- W1983313287 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23370313" @default.
- W1983313287 hasPublicationYear "2013" @default.
- W1983313287 type Work @default.
- W1983313287 sameAs 1983313287 @default.
- W1983313287 citedByCount "48" @default.
- W1983313287 countsByYear W19833132872013 @default.
- W1983313287 countsByYear W19833132872014 @default.
- W1983313287 countsByYear W19833132872015 @default.
- W1983313287 countsByYear W19833132872016 @default.
- W1983313287 countsByYear W19833132872017 @default.
- W1983313287 countsByYear W19833132872018 @default.
- W1983313287 countsByYear W19833132872019 @default.
- W1983313287 countsByYear W19833132872020 @default.
- W1983313287 countsByYear W19833132872021 @default.
- W1983313287 crossrefType "journal-article" @default.
- W1983313287 hasAuthorship W1983313287A5004092209 @default.
- W1983313287 hasAuthorship W1983313287A5018510897 @default.
- W1983313287 hasAuthorship W1983313287A5024041489 @default.
- W1983313287 hasAuthorship W1983313287A5030011660 @default.
- W1983313287 hasAuthorship W1983313287A5052532082 @default.
- W1983313287 hasAuthorship W1983313287A5091780864 @default.
- W1983313287 hasConcept C102094743 @default.
- W1983313287 hasConcept C105795698 @default.
- W1983313287 hasConcept C11413529 @default.
- W1983313287 hasConcept C119857082 @default.
- W1983313287 hasConcept C121332964 @default.
- W1983313287 hasConcept C143647101 @default.
- W1983313287 hasConcept C153050134 @default.
- W1983313287 hasConcept C153180895 @default.
- W1983313287 hasConcept C154945302 @default.
- W1983313287 hasConcept C15744967 @default.
- W1983313287 hasConcept C169760540 @default.
- W1983313287 hasConcept C180205008 @default.
- W1983313287 hasConcept C20566671 @default.
- W1983313287 hasConcept C33923547 @default.
- W1983313287 hasConcept C41008148 @default.
- W1983313287 hasConcept C522805319 @default.
- W1983313287 hasConcept C62520636 @default.
- W1983313287 hasConcept C64341305 @default.
- W1983313287 hasConcept C64869954 @default.
- W1983313287 hasConcept C79337645 @default.
- W1983313287 hasConceptScore W1983313287C102094743 @default.
- W1983313287 hasConceptScore W1983313287C105795698 @default.