Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983353144> ?p ?o ?g. }
- W1983353144 endingPage "1525" @default.
- W1983353144 startingPage "1514" @default.
- W1983353144 abstract "Abstract Data‐driven models are widely used in process industries for monitoring and control purposes. No matter what kind of models one chooses, model‐plant mismatch always exists; it is, therefore, important to implement model update strategies using the latest observation information of the investigated process. In practice, multiple observation sources such as frequent but inaccurate or accurate but infrequent measurements coexist for a same quality variable. In this article, we show how the flexibility of the Bayesian approach can be exploited to account for multiple‐source observations with different degrees of belief. A practical Bayesian fusion formulation with time‐varying variances is proposed to deal with possible abnormal observations. A sequential Monte Carlo sampling based particle filter is used for simultaneously handling systematic and nonsystematic errors (i.e., bias and noise) in the presence of process constraints. The proposed method is illustrated through a simulation example and a data‐driven soft sensor application in an oil sands froth treatment process. © 2010 American Institute of Chemical Engineers AIChE J, 57: 1514–1525, 2011" @default.
- W1983353144 created "2016-06-24" @default.
- W1983353144 creator A5032831658 @default.
- W1983353144 creator A5037638087 @default.
- W1983353144 creator A5040409719 @default.
- W1983353144 creator A5071540194 @default.
- W1983353144 creator A5090898021 @default.
- W1983353144 date "2011-05-05" @default.
- W1983353144 modified "2023-10-16" @default.
- W1983353144 title "Bayesian method for multirate data synthesis and model calibration" @default.
- W1983353144 cites W1964489763 @default.
- W1983353144 cites W1966376038 @default.
- W1983353144 cites W1968763291 @default.
- W1983353144 cites W1970391834 @default.
- W1983353144 cites W1972967324 @default.
- W1983353144 cites W1981031086 @default.
- W1983353144 cites W1981443767 @default.
- W1983353144 cites W1990384678 @default.
- W1983353144 cites W1990524187 @default.
- W1983353144 cites W1998745983 @default.
- W1983353144 cites W2000651380 @default.
- W1983353144 cites W2010887332 @default.
- W1983353144 cites W2020968226 @default.
- W1983353144 cites W2029526200 @default.
- W1983353144 cites W2031644040 @default.
- W1983353144 cites W2033791852 @default.
- W1983353144 cites W2034485410 @default.
- W1983353144 cites W2036706046 @default.
- W1983353144 cites W2047619877 @default.
- W1983353144 cites W2056734875 @default.
- W1983353144 cites W2059384625 @default.
- W1983353144 cites W2067338244 @default.
- W1983353144 cites W2068898188 @default.
- W1983353144 cites W2075458701 @default.
- W1983353144 cites W2080973322 @default.
- W1983353144 cites W2085721854 @default.
- W1983353144 cites W2098613108 @default.
- W1983353144 cites W2103889133 @default.
- W1983353144 cites W2137492596 @default.
- W1983353144 cites W2142635246 @default.
- W1983353144 cites W2146107935 @default.
- W1983353144 cites W2146207066 @default.
- W1983353144 cites W2159901472 @default.
- W1983353144 cites W2160337655 @default.
- W1983353144 cites W2163784969 @default.
- W1983353144 cites W2172005403 @default.
- W1983353144 cites W4232421753 @default.
- W1983353144 cites W4240068099 @default.
- W1983353144 cites W4240691156 @default.
- W1983353144 cites W4242769594 @default.
- W1983353144 cites W4302564868 @default.
- W1983353144 doi "https://doi.org/10.1002/aic.12358" @default.
- W1983353144 hasPublicationYear "2011" @default.
- W1983353144 type Work @default.
- W1983353144 sameAs 1983353144 @default.
- W1983353144 citedByCount "28" @default.
- W1983353144 countsByYear W19833531442012 @default.
- W1983353144 countsByYear W19833531442013 @default.
- W1983353144 countsByYear W19833531442014 @default.
- W1983353144 countsByYear W19833531442015 @default.
- W1983353144 countsByYear W19833531442016 @default.
- W1983353144 countsByYear W19833531442017 @default.
- W1983353144 countsByYear W19833531442019 @default.
- W1983353144 countsByYear W19833531442020 @default.
- W1983353144 countsByYear W19833531442021 @default.
- W1983353144 countsByYear W19833531442022 @default.
- W1983353144 crossrefType "journal-article" @default.
- W1983353144 hasAuthorship W1983353144A5032831658 @default.
- W1983353144 hasAuthorship W1983353144A5037638087 @default.
- W1983353144 hasAuthorship W1983353144A5040409719 @default.
- W1983353144 hasAuthorship W1983353144A5071540194 @default.
- W1983353144 hasAuthorship W1983353144A5090898021 @default.
- W1983353144 hasConcept C105795698 @default.
- W1983353144 hasConcept C106131492 @default.
- W1983353144 hasConcept C107673813 @default.
- W1983353144 hasConcept C111919701 @default.
- W1983353144 hasConcept C11413529 @default.
- W1983353144 hasConcept C115575686 @default.
- W1983353144 hasConcept C115961682 @default.
- W1983353144 hasConcept C124101348 @default.
- W1983353144 hasConcept C140779682 @default.
- W1983353144 hasConcept C154945302 @default.
- W1983353144 hasConcept C165838908 @default.
- W1983353144 hasConcept C19499675 @default.
- W1983353144 hasConcept C2780598303 @default.
- W1983353144 hasConcept C31972630 @default.
- W1983353144 hasConcept C33923547 @default.
- W1983353144 hasConcept C41008148 @default.
- W1983353144 hasConcept C52421305 @default.
- W1983353144 hasConcept C98045186 @default.
- W1983353144 hasConcept C99498987 @default.
- W1983353144 hasConceptScore W1983353144C105795698 @default.
- W1983353144 hasConceptScore W1983353144C106131492 @default.
- W1983353144 hasConceptScore W1983353144C107673813 @default.
- W1983353144 hasConceptScore W1983353144C111919701 @default.
- W1983353144 hasConceptScore W1983353144C11413529 @default.
- W1983353144 hasConceptScore W1983353144C115575686 @default.
- W1983353144 hasConceptScore W1983353144C115961682 @default.