Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983408365> ?p ?o ?g. }
- W1983408365 endingPage "13" @default.
- W1983408365 startingPage "1" @default.
- W1983408365 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 351:1-13 (2007) - DOI: https://doi.org/10.3354/meps07298 Jellyfish modify the response of planktonic assemblages to nutrient pulses Kylie A. Pitt1,*, Michael J. Kingsford2, David Rissik3, Klaus Koop4 1Australian Rivers Institute (Coast and Estuaries) and Griffith School of Environment, Gold Coast Campus, Griffith University, Queensland 4222, Australia 2School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4810, Australia 3Freshwater and Marine Sciences, Queensland Environmental Protection Agency, 80 Meiers Road, Indooroopilly, Queensland 4068, Australia 4New South Wales Department of Environment and Climate Change, PO Box A290, Sydney South, New South Wales 1232, Australia *Email: k.pitt@griffith.edu.au ABSTRACT: The short-term effects of pulses of nutrients and jellyfish Catostylus mosaicus on planktonic assemblages were investigated in field-based experiments using 3 m3 mesocosms. Experiments ran for 5 d and were repeated in autumn and spring at Lake Illawarra, a coastal lagoon in New South Wales, Australia. Experiments consisted of 2 orthogonal treatments, addition/non-addition of nutrients and presence/absence of jellyfish, and were designed to determine how bottom-up (i.e. addition of nutrients) and top-down (i.e. predation by jellyfish) processes influence planktonic assemblages, both independently and in combination. During both experiments, nutrients stimulated primary production and caused changes in phytoplankton assemblages. Nutrients also stimulated production of large tintinnids, suggesting that bottom-up processes may influence 2 trophic levels. Mesozooplankton were consistently depleted in mesocosms containing jellyfish. Jellyfish also caused changes in microzooplankton assemblages, indicating that top-down processes also cascade to at least 2 trophic levels. In mesocosms to which both nutrients and jellyfish were added during spring, concentrations of the red-tide forming, heterotrophic dinoflagellate Noctiluca scintillans were 20 times greater than in mesocosms to which nutrients were added alone. We hypothesize that addition of nutrients stimulated production of centric diatoms, the main prey of N. scintillans, but that a bloom of N. scintillans only formed when jellyfish were also present because jellyfish grazed on populations of herbivorous mesozooplankton (particularly the calanoid copepod Gladioferens), which generally out-competed N. scintillans for diatom prey. These data provide the first empirical evidence linking jellyfish to the formation of red tides. KEY WORDS: Red tides · Trophic cascades · Catostylus mosaicus · Noctiluca scintillans Full text in pdf format NextCite this article as: Pitt KA, Kingsford MJ, Rissik D, Koop K (2007) Jellyfish modify the response of planktonic assemblages to nutrient pulses. Mar Ecol Prog Ser 351:1-13. https://doi.org/10.3354/meps07298Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 351. Online publication date: December 06, 2007 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2007 Inter-Research." @default.
- W1983408365 created "2016-06-24" @default.
- W1983408365 creator A5032322797 @default.
- W1983408365 creator A5036207910 @default.
- W1983408365 creator A5062278629 @default.
- W1983408365 creator A5079159612 @default.
- W1983408365 date "2007-12-06" @default.
- W1983408365 modified "2023-10-18" @default.
- W1983408365 title "Jellyfish modify the response of planktonic assemblages to nutrient pulses" @default.
- W1983408365 cites W1595503624 @default.
- W1983408365 cites W1605811138 @default.
- W1983408365 cites W1781519410 @default.
- W1983408365 cites W1842873419 @default.
- W1983408365 cites W1964297591 @default.
- W1983408365 cites W198083648 @default.
- W1983408365 cites W1983573874 @default.
- W1983408365 cites W1983790973 @default.
- W1983408365 cites W2005495345 @default.
- W1983408365 cites W2009642992 @default.
- W1983408365 cites W2010303663 @default.
- W1983408365 cites W2010830800 @default.
- W1983408365 cites W2011605774 @default.
- W1983408365 cites W2012199254 @default.
- W1983408365 cites W2018580425 @default.
- W1983408365 cites W2020661342 @default.
- W1983408365 cites W2025015574 @default.
- W1983408365 cites W2034058424 @default.
- W1983408365 cites W2048209309 @default.
- W1983408365 cites W2049051125 @default.
- W1983408365 cites W2054994033 @default.
- W1983408365 cites W2056467812 @default.
- W1983408365 cites W2064541980 @default.
- W1983408365 cites W2067120802 @default.
- W1983408365 cites W2075410326 @default.
- W1983408365 cites W2078749928 @default.
- W1983408365 cites W2079073199 @default.
- W1983408365 cites W2079180167 @default.
- W1983408365 cites W2094463810 @default.
- W1983408365 cites W2099777965 @default.
- W1983408365 cites W2105615541 @default.
- W1983408365 cites W2123453718 @default.
- W1983408365 cites W2123855147 @default.
- W1983408365 cites W2125221362 @default.
- W1983408365 cites W2142354935 @default.
- W1983408365 cites W2146196313 @default.
- W1983408365 cites W2146247585 @default.
- W1983408365 cites W2147618390 @default.
- W1983408365 cites W2149062125 @default.
- W1983408365 cites W2153745298 @default.
- W1983408365 cites W2170581218 @default.
- W1983408365 cites W2460636339 @default.
- W1983408365 cites W2937603433 @default.
- W1983408365 cites W3035630641 @default.
- W1983408365 doi "https://doi.org/10.3354/meps07298" @default.
- W1983408365 hasPublicationYear "2007" @default.
- W1983408365 type Work @default.
- W1983408365 sameAs 1983408365 @default.
- W1983408365 citedByCount "40" @default.
- W1983408365 countsByYear W19834083652012 @default.
- W1983408365 countsByYear W19834083652013 @default.
- W1983408365 countsByYear W19834083652014 @default.
- W1983408365 countsByYear W19834083652015 @default.
- W1983408365 countsByYear W19834083652016 @default.
- W1983408365 countsByYear W19834083652017 @default.
- W1983408365 countsByYear W19834083652019 @default.
- W1983408365 countsByYear W19834083652020 @default.
- W1983408365 countsByYear W19834083652021 @default.
- W1983408365 countsByYear W19834083652022 @default.
- W1983408365 countsByYear W19834083652023 @default.
- W1983408365 crossrefType "journal-article" @default.
- W1983408365 hasAuthorship W1983408365A5032322797 @default.
- W1983408365 hasAuthorship W1983408365A5036207910 @default.
- W1983408365 hasAuthorship W1983408365A5062278629 @default.
- W1983408365 hasAuthorship W1983408365A5079159612 @default.
- W1983408365 hasBestOaLocation W19834083651 @default.
- W1983408365 hasConcept C108469399 @default.
- W1983408365 hasConcept C111368507 @default.
- W1983408365 hasConcept C127313418 @default.
- W1983408365 hasConcept C142796444 @default.
- W1983408365 hasConcept C180553826 @default.
- W1983408365 hasConcept C18903297 @default.
- W1983408365 hasConcept C2779735984 @default.
- W1983408365 hasConcept C2780892065 @default.
- W1983408365 hasConcept C39432304 @default.
- W1983408365 hasConcept C72958200 @default.
- W1983408365 hasConcept C86803240 @default.
- W1983408365 hasConcept C88160329 @default.
- W1983408365 hasConceptScore W1983408365C108469399 @default.
- W1983408365 hasConceptScore W1983408365C111368507 @default.
- W1983408365 hasConceptScore W1983408365C127313418 @default.
- W1983408365 hasConceptScore W1983408365C142796444 @default.
- W1983408365 hasConceptScore W1983408365C180553826 @default.
- W1983408365 hasConceptScore W1983408365C18903297 @default.
- W1983408365 hasConceptScore W1983408365C2779735984 @default.
- W1983408365 hasConceptScore W1983408365C2780892065 @default.
- W1983408365 hasConceptScore W1983408365C39432304 @default.
- W1983408365 hasConceptScore W1983408365C72958200 @default.
- W1983408365 hasConceptScore W1983408365C86803240 @default.