Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983483726> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W1983483726 endingPage "379" @default.
- W1983483726 startingPage "370" @default.
- W1983483726 abstract "Climate change is a prevalent issue facing the world today. Unexpected increase in rainfall intensity and events is one of the major signatures of climate change. Rainfall influences traffic conditions and, in turn, traffic volume in urban arterials. For improved traffic management under adverse weather conditions, it is important to develop a traffic prediction algorithm considering the effect of rainfall. This inclusion is not intuitive as the effect is not immediate, and the influence of rainfall on traffic volume is often unrecognizable in a direct correlation analysis between the two time-series data sets; it can only be observed at certain frequency levels. Accordingly, it is useful to employ a multiresolution prediction framework to develop a weather adaptive traffic forecasting algorithm. Discrete wavelet transform (DWT) is a well-known multiresolution data analysis methodology. However, DWT imparts time variance in the transformed signal and makes it unsuitable for further time-series analysis. Therefore, the stationary form of DWT known as stationary wavelet transform (SWT) has been used in this paper to develop a neurowavelet prediction algorithm to forecast hourly traffic flow considering the effect of rainfall. The proposed prediction algorithm has been evaluated at two urban arterial locations in Dublin, Ireland. This paper shows that the rainfall data successfully augments the traffic flow data as an exogenous variable in periods of inclement weather, resulting in accurate predictions of future traffic flow at the two chosen locations. The forecasts from the neurowavelet model outperform the forecasts from the standard artificial neural network (ANN) model." @default.
- W1983483726 created "2016-06-24" @default.
- W1983483726 creator A5010046421 @default.
- W1983483726 creator A5087383914 @default.
- W1983483726 date "2013-03-01" @default.
- W1983483726 modified "2023-09-30" @default.
- W1983483726 title "Weather Adaptive Traffic Prediction Using Neurowavelet Models" @default.
- W1983483726 cites W1535200633 @default.
- W1983483726 cites W1544613517 @default.
- W1983483726 cites W1967444754 @default.
- W1983483726 cites W1967681834 @default.
- W1983483726 cites W1983615082 @default.
- W1983483726 cites W2007215240 @default.
- W1983483726 cites W2007317905 @default.
- W1983483726 cites W2013050169 @default.
- W1983483726 cites W2021229894 @default.
- W1983483726 cites W2024919242 @default.
- W1983483726 cites W2079662306 @default.
- W1983483726 cites W2086686542 @default.
- W1983483726 cites W2087070363 @default.
- W1983483726 cites W2093460543 @default.
- W1983483726 cites W2101227080 @default.
- W1983483726 cites W2109177467 @default.
- W1983483726 cites W2127471809 @default.
- W1983483726 cites W2132984323 @default.
- W1983483726 cites W2139606794 @default.
- W1983483726 cites W2140709981 @default.
- W1983483726 cites W2150152686 @default.
- W1983483726 cites W2156793027 @default.
- W1983483726 cites W2159399339 @default.
- W1983483726 cites W2168919808 @default.
- W1983483726 cites W2256578114 @default.
- W1983483726 cites W2332670361 @default.
- W1983483726 doi "https://doi.org/10.1109/tits.2012.2225049" @default.
- W1983483726 hasPublicationYear "2013" @default.
- W1983483726 type Work @default.
- W1983483726 sameAs 1983483726 @default.
- W1983483726 citedByCount "76" @default.
- W1983483726 countsByYear W19834837262014 @default.
- W1983483726 countsByYear W19834837262015 @default.
- W1983483726 countsByYear W19834837262016 @default.
- W1983483726 countsByYear W19834837262017 @default.
- W1983483726 countsByYear W19834837262018 @default.
- W1983483726 countsByYear W19834837262019 @default.
- W1983483726 countsByYear W19834837262020 @default.
- W1983483726 countsByYear W19834837262021 @default.
- W1983483726 countsByYear W19834837262022 @default.
- W1983483726 countsByYear W19834837262023 @default.
- W1983483726 crossrefType "journal-article" @default.
- W1983483726 hasAuthorship W1983483726A5010046421 @default.
- W1983483726 hasAuthorship W1983483726A5087383914 @default.
- W1983483726 hasConcept C119857082 @default.
- W1983483726 hasConcept C124101348 @default.
- W1983483726 hasConcept C151406439 @default.
- W1983483726 hasConcept C153294291 @default.
- W1983483726 hasConcept C154945302 @default.
- W1983483726 hasConcept C196216189 @default.
- W1983483726 hasConcept C205649164 @default.
- W1983483726 hasConcept C207512268 @default.
- W1983483726 hasConcept C38652104 @default.
- W1983483726 hasConcept C41008148 @default.
- W1983483726 hasConcept C46286280 @default.
- W1983483726 hasConcept C47432892 @default.
- W1983483726 hasConcept C50644808 @default.
- W1983483726 hasConceptScore W1983483726C119857082 @default.
- W1983483726 hasConceptScore W1983483726C124101348 @default.
- W1983483726 hasConceptScore W1983483726C151406439 @default.
- W1983483726 hasConceptScore W1983483726C153294291 @default.
- W1983483726 hasConceptScore W1983483726C154945302 @default.
- W1983483726 hasConceptScore W1983483726C196216189 @default.
- W1983483726 hasConceptScore W1983483726C205649164 @default.
- W1983483726 hasConceptScore W1983483726C207512268 @default.
- W1983483726 hasConceptScore W1983483726C38652104 @default.
- W1983483726 hasConceptScore W1983483726C41008148 @default.
- W1983483726 hasConceptScore W1983483726C46286280 @default.
- W1983483726 hasConceptScore W1983483726C47432892 @default.
- W1983483726 hasConceptScore W1983483726C50644808 @default.
- W1983483726 hasIssue "1" @default.
- W1983483726 hasLocation W19834837261 @default.
- W1983483726 hasOpenAccess W1983483726 @default.
- W1983483726 hasPrimaryLocation W19834837261 @default.
- W1983483726 hasRelatedWork W1582929348 @default.
- W1983483726 hasRelatedWork W1588899229 @default.
- W1983483726 hasRelatedWork W1918078477 @default.
- W1983483726 hasRelatedWork W2023142747 @default.
- W1983483726 hasRelatedWork W2059234650 @default.
- W1983483726 hasRelatedWork W2069911536 @default.
- W1983483726 hasRelatedWork W2085792030 @default.
- W1983483726 hasRelatedWork W2379361621 @default.
- W1983483726 hasRelatedWork W4205091537 @default.
- W1983483726 hasRelatedWork W4206491577 @default.
- W1983483726 hasVolume "14" @default.
- W1983483726 isParatext "false" @default.
- W1983483726 isRetracted "false" @default.
- W1983483726 magId "1983483726" @default.
- W1983483726 workType "article" @default.