Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983521103> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W1983521103 endingPage "24" @default.
- W1983521103 startingPage "1" @default.
- W1983521103 abstract "Scheduling of a bus transit system must be formulated as an optimization problem, if the level of service to passengers is to be maximized within the available resources. In this paper, we present a formulation of a transit system scheduling problem with the objective of minimizing the overall waiting time of transferring and nontransferring passengers while satisfying a number of resource- and service-related constraints. It is observed that the number of variables and constraints for even a simple transit system (a single bus station with three routes) is too large to tackle using classical mixed-integer optimization techniques. The paper shows that genetic algorithms (GAs) are ideal for these problems, mainly because they (i) naturally handle binary variables, thereby taking care of transfer decision variables, which constitute the majority of the decision variables in the transit scheduling problem; and (ii) allow procedure-based declarations, thereby allowing complex algorithmic approaches (involving if then-else conditions) to be handled easily. The paper also shows how easily the same GA procedure with minimal modifications can handle a number of other more pragmatic extensions to the simple transit scheduling problem: buses with limited capacity, buses that do not arrive exactly as per scheduled times, and a multiple-station transit system having common routes among bus stations. Simulation results show the success of GAs in all these problems and suggest the application of GAs in more complex scheduling problems." @default.
- W1983521103 created "2016-06-24" @default.
- W1983521103 creator A5029989460 @default.
- W1983521103 creator A5088394271 @default.
- W1983521103 date "1998-03-01" @default.
- W1983521103 modified "2023-10-16" @default.
- W1983521103 title "Time Scheduling of Transit Systems With Transfer Considerations Using Genetic Algorithms" @default.
- W1983521103 cites W1497256448 @default.
- W1983521103 cites W1501399145 @default.
- W1983521103 cites W1527244075 @default.
- W1983521103 cites W2024625004 @default.
- W1983521103 cites W2027291572 @default.
- W1983521103 cites W2047177125 @default.
- W1983521103 cites W2083005814 @default.
- W1983521103 cites W3023540311 @default.
- W1983521103 doi "https://doi.org/10.1162/evco.1998.6.1.1" @default.
- W1983521103 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10021738" @default.
- W1983521103 hasPublicationYear "1998" @default.
- W1983521103 type Work @default.
- W1983521103 sameAs 1983521103 @default.
- W1983521103 citedByCount "37" @default.
- W1983521103 countsByYear W19835211032012 @default.
- W1983521103 countsByYear W19835211032013 @default.
- W1983521103 countsByYear W19835211032014 @default.
- W1983521103 countsByYear W19835211032015 @default.
- W1983521103 countsByYear W19835211032016 @default.
- W1983521103 countsByYear W19835211032017 @default.
- W1983521103 countsByYear W19835211032019 @default.
- W1983521103 countsByYear W19835211032020 @default.
- W1983521103 crossrefType "journal-article" @default.
- W1983521103 hasAuthorship W1983521103A5029989460 @default.
- W1983521103 hasAuthorship W1983521103A5088394271 @default.
- W1983521103 hasConcept C126255220 @default.
- W1983521103 hasConcept C206729178 @default.
- W1983521103 hasConcept C31258907 @default.
- W1983521103 hasConcept C33923547 @default.
- W1983521103 hasConcept C41008148 @default.
- W1983521103 hasConcept C55416958 @default.
- W1983521103 hasConcept C74172769 @default.
- W1983521103 hasConcept C8880873 @default.
- W1983521103 hasConceptScore W1983521103C126255220 @default.
- W1983521103 hasConceptScore W1983521103C206729178 @default.
- W1983521103 hasConceptScore W1983521103C31258907 @default.
- W1983521103 hasConceptScore W1983521103C33923547 @default.
- W1983521103 hasConceptScore W1983521103C41008148 @default.
- W1983521103 hasConceptScore W1983521103C55416958 @default.
- W1983521103 hasConceptScore W1983521103C74172769 @default.
- W1983521103 hasConceptScore W1983521103C8880873 @default.
- W1983521103 hasIssue "1" @default.
- W1983521103 hasLocation W19835211031 @default.
- W1983521103 hasLocation W19835211032 @default.
- W1983521103 hasOpenAccess W1983521103 @default.
- W1983521103 hasPrimaryLocation W19835211031 @default.
- W1983521103 hasRelatedWork W2112121444 @default.
- W1983521103 hasRelatedWork W2358668433 @default.
- W1983521103 hasRelatedWork W2376932109 @default.
- W1983521103 hasRelatedWork W2382290278 @default.
- W1983521103 hasRelatedWork W2390279801 @default.
- W1983521103 hasRelatedWork W2509452605 @default.
- W1983521103 hasRelatedWork W2748952813 @default.
- W1983521103 hasRelatedWork W2899084033 @default.
- W1983521103 hasRelatedWork W3172150420 @default.
- W1983521103 hasRelatedWork W3204654320 @default.
- W1983521103 hasVolume "6" @default.
- W1983521103 isParatext "false" @default.
- W1983521103 isRetracted "false" @default.
- W1983521103 magId "1983521103" @default.
- W1983521103 workType "article" @default.