Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983648520> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W1983648520 abstract "Abstract It is generally accepted that classification accuracy is affected by the number of learning documents, but there are few studies that show how this influences automatic text classification. This study is focused on evaluating the deviation-based classification model which is developed recently for genre-based classification and comparing it to other classification algorithms with the changing number of training documents. Experiment results show that the deviation-based classification model performs with a superior accuracy of 0.8 from categorizing 7 genres with only 21 training documents. This exceeds the accuracy of Bayesian and SVM. The Deviation-based classification model obtains strong feature selection capability even with small number of training documents because it learns subject information within genre while other methods use different learning process. Key Words : automatic classification, accuracy of classification, the number of training documents요 약 일반적으로 자동분류는 학습문서의 개수에 영향을 받는다고 알려져 있지만 실제로 학습문서의 수가 텍스트 자동분류에 어떻게 영향을 주는지 입증한 연구는 거의 없었다. 본 연구에서는 학습문서 수가 자동분류에 어떤 영향을 주는지 알아보기 위해 최근에 개발된 편차기반 분류방법을 중심으로 다른 분류 알고리즘과 비교하는데 초점을 두었다. 실험결과, 편차기반 분류모델은 학습문서의 수가 총 21개(7개 장르)인 상황에서 정확도가 0.8로 베이지안이나 지지벡터기계보다 우수하게 나타났다. 이것은 편차기반 분류모델이 장르내의 주제정보를 이용하여 학습하기 때문에 학습문서의 수가 적더라도 다른 학습방법보다 좋은 자질 선택 능력을 갖는다는 것을 입증한 것이다 ." @default.
- W1983648520 created "2016-06-24" @default.
- W1983648520 creator A5061892354 @default.
- W1983648520 date "2014-06-28" @default.
- W1983648520 modified "2023-09-24" @default.
- W1983648520 title "Classification Accuracy by Deviation-based Classification Method with the Number of Training Documents" @default.
- W1983648520 cites W2001569578 @default.
- W1983648520 cites W2060216474 @default.
- W1983648520 cites W2065823460 @default.
- W1983648520 cites W2094934653 @default.
- W1983648520 cites W2099284343 @default.
- W1983648520 cites W2107682024 @default.
- W1983648520 cites W2130887095 @default.
- W1983648520 cites W2152838763 @default.
- W1983648520 cites W2161330515 @default.
- W1983648520 cites W21908225 @default.
- W1983648520 cites W2315865524 @default.
- W1983648520 cites W3144874932 @default.
- W1983648520 doi "https://doi.org/10.14400/jdc.2014.12.6.325" @default.
- W1983648520 hasPublicationYear "2014" @default.
- W1983648520 type Work @default.
- W1983648520 sameAs 1983648520 @default.
- W1983648520 citedByCount "1" @default.
- W1983648520 countsByYear W19836485202019 @default.
- W1983648520 crossrefType "journal-article" @default.
- W1983648520 hasAuthorship W1983648520A5061892354 @default.
- W1983648520 hasBestOaLocation W19836485201 @default.
- W1983648520 hasConcept C105795698 @default.
- W1983648520 hasConcept C119857082 @default.
- W1983648520 hasConcept C12267149 @default.
- W1983648520 hasConcept C138885662 @default.
- W1983648520 hasConcept C148483581 @default.
- W1983648520 hasConcept C153180895 @default.
- W1983648520 hasConcept C154945302 @default.
- W1983648520 hasConcept C22679943 @default.
- W1983648520 hasConcept C2776401178 @default.
- W1983648520 hasConcept C33923547 @default.
- W1983648520 hasConcept C41008148 @default.
- W1983648520 hasConcept C41895202 @default.
- W1983648520 hasConceptScore W1983648520C105795698 @default.
- W1983648520 hasConceptScore W1983648520C119857082 @default.
- W1983648520 hasConceptScore W1983648520C12267149 @default.
- W1983648520 hasConceptScore W1983648520C138885662 @default.
- W1983648520 hasConceptScore W1983648520C148483581 @default.
- W1983648520 hasConceptScore W1983648520C153180895 @default.
- W1983648520 hasConceptScore W1983648520C154945302 @default.
- W1983648520 hasConceptScore W1983648520C22679943 @default.
- W1983648520 hasConceptScore W1983648520C2776401178 @default.
- W1983648520 hasConceptScore W1983648520C33923547 @default.
- W1983648520 hasConceptScore W1983648520C41008148 @default.
- W1983648520 hasConceptScore W1983648520C41895202 @default.
- W1983648520 hasLocation W19836485201 @default.
- W1983648520 hasOpenAccess W1983648520 @default.
- W1983648520 hasPrimaryLocation W19836485201 @default.
- W1983648520 hasRelatedWork W2129910523 @default.
- W1983648520 hasRelatedWork W2181373597 @default.
- W1983648520 hasRelatedWork W2292910329 @default.
- W1983648520 hasRelatedWork W2324897553 @default.
- W1983648520 hasRelatedWork W2796497448 @default.
- W1983648520 hasRelatedWork W2807776514 @default.
- W1983648520 hasRelatedWork W2900292107 @default.
- W1983648520 hasRelatedWork W2921004873 @default.
- W1983648520 hasRelatedWork W2969695922 @default.
- W1983648520 hasRelatedWork W2973686738 @default.
- W1983648520 hasRelatedWork W3035375146 @default.
- W1983648520 hasRelatedWork W3132467470 @default.
- W1983648520 hasRelatedWork W3147762595 @default.
- W1983648520 hasRelatedWork W3173130844 @default.
- W1983648520 hasRelatedWork W999532949 @default.
- W1983648520 hasRelatedWork W2864028397 @default.
- W1983648520 hasRelatedWork W2872275964 @default.
- W1983648520 hasRelatedWork W3095432964 @default.
- W1983648520 hasRelatedWork W3097252850 @default.
- W1983648520 hasRelatedWork W3141224998 @default.
- W1983648520 isParatext "false" @default.
- W1983648520 isRetracted "false" @default.
- W1983648520 magId "1983648520" @default.
- W1983648520 workType "article" @default.