Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983676031> ?p ?o ?g. }
- W1983676031 endingPage "80" @default.
- W1983676031 startingPage "70" @default.
- W1983676031 abstract "Support vector machine (SVM) modeling is based on statistical learning theory. It involves a training phase with associated input and target output values. In recent years, the method has become increasingly popular. The main purpose of this study is to evaluate the mapping power of SVM modeling in earthquake triggered landslide-susceptibility mapping for a section of the Jianjiang River watershed using a Geographic Information System (GIS) software. The river was affected by the Wenchuan earthquake of May 12, 2008. Visual interpretation of colored aerial photographs of 1-m resolution and extensive field surveys provided a detailed landslide inventory map containing 3147 landslides related to the 2008 Wenchuan earthquake. Elevation, slope angle, slope aspect, distance from seismogenic faults, distance from drainages, and lithology were used as the controlling parameters. For modeling, three groups of positive and negative training samples were used in concert with four different kernel functions. Positive training samples include the centroids of 500 large landslides, those of all 3147 landslides, and 5000 randomly selected points in landslide polygons. Negative training samples include 500, 3147, and 5000 randomly selected points on slopes that remained stable during the Wenchuan earthquake. The four kernel functions are linear, polynomial, radial basis, and sigmoid. In total, 12 cases of landslide susceptibility were mapped. Comparative analyses of landslide-susceptibility probability and area relation curves show that both the polynomial and radial basis functions suitably classified the input data as either landslide positive or negative though the radial basis function was more successful. The 12 generated landslide-susceptibility maps were compared with known landslide centroid locations and landslide polygons to verify the success rate and predictive accuracy of each model. The 12 results were further validated using area-under-curve analysis. Group 3 with 5000 randomly selected points on the landslide polygons, and 5000 randomly selected points along stable slopes gave the best results with a success rate of 79.20% and predictive accuracy of 79.13% under the radial basis function. Of all the results, the sigmoid kernel function was the least skillful when used in concert with the centroid data of all 3147 landslides as positive training samples, and the negative training samples of 3147 randomly selected points in regions of stable slope (success rate = 54.95%; predictive accuracy = 61.85%). This paper also provides suggestions and reference data for selecting appropriate training samples and kernel function types for earthquake triggered landslide-susceptibility mapping using SVM modeling. Predictive landslide-susceptibility maps could be useful in hazard mitigation by helping planners understand the probability of landslides in different regions." @default.
- W1983676031 created "2016-06-24" @default.
- W1983676031 creator A5067057709 @default.
- W1983676031 creator A5067398555 @default.
- W1983676031 creator A5069090047 @default.
- W1983676031 creator A5077706881 @default.
- W1983676031 date "2012-04-01" @default.
- W1983676031 modified "2023-10-12" @default.
- W1983676031 title "GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China" @default.
- W1983676031 cites W1528099559 @default.
- W1983676031 cites W1982948123 @default.
- W1983676031 cites W2017458088 @default.
- W1983676031 cites W2023203753 @default.
- W1983676031 cites W2030389398 @default.
- W1983676031 cites W2035747501 @default.
- W1983676031 cites W2046752082 @default.
- W1983676031 cites W2059910975 @default.
- W1983676031 cites W2075226550 @default.
- W1983676031 cites W2080134555 @default.
- W1983676031 cites W2100075837 @default.
- W1983676031 cites W2100294832 @default.
- W1983676031 cites W2122447387 @default.
- W1983676031 cites W2134955829 @default.
- W1983676031 cites W2145693114 @default.
- W1983676031 cites W2147555471 @default.
- W1983676031 cites W2161920802 @default.
- W1983676031 cites W2236234032 @default.
- W1983676031 cites W2395629945 @default.
- W1983676031 doi "https://doi.org/10.1016/j.geomorph.2011.12.040" @default.
- W1983676031 hasPublicationYear "2012" @default.
- W1983676031 type Work @default.
- W1983676031 sameAs 1983676031 @default.
- W1983676031 citedByCount "320" @default.
- W1983676031 countsByYear W19836760312012 @default.
- W1983676031 countsByYear W19836760312013 @default.
- W1983676031 countsByYear W19836760312014 @default.
- W1983676031 countsByYear W19836760312015 @default.
- W1983676031 countsByYear W19836760312016 @default.
- W1983676031 countsByYear W19836760312017 @default.
- W1983676031 countsByYear W19836760312018 @default.
- W1983676031 countsByYear W19836760312019 @default.
- W1983676031 countsByYear W19836760312020 @default.
- W1983676031 countsByYear W19836760312021 @default.
- W1983676031 countsByYear W19836760312022 @default.
- W1983676031 countsByYear W19836760312023 @default.
- W1983676031 crossrefType "journal-article" @default.
- W1983676031 hasAuthorship W1983676031A5067057709 @default.
- W1983676031 hasAuthorship W1983676031A5067398555 @default.
- W1983676031 hasAuthorship W1983676031A5069090047 @default.
- W1983676031 hasAuthorship W1983676031A5077706881 @default.
- W1983676031 hasConcept C119857082 @default.
- W1983676031 hasConcept C12267149 @default.
- W1983676031 hasConcept C122792734 @default.
- W1983676031 hasConcept C127313418 @default.
- W1983676031 hasConcept C146599234 @default.
- W1983676031 hasConcept C150547873 @default.
- W1983676031 hasConcept C151730666 @default.
- W1983676031 hasConcept C154945302 @default.
- W1983676031 hasConcept C165205528 @default.
- W1983676031 hasConcept C186295008 @default.
- W1983676031 hasConcept C205649164 @default.
- W1983676031 hasConcept C41008148 @default.
- W1983676031 hasConcept C41856607 @default.
- W1983676031 hasConcept C50644808 @default.
- W1983676031 hasConcept C58640448 @default.
- W1983676031 hasConcept C62649853 @default.
- W1983676031 hasConcept C98856871 @default.
- W1983676031 hasConceptScore W1983676031C119857082 @default.
- W1983676031 hasConceptScore W1983676031C12267149 @default.
- W1983676031 hasConceptScore W1983676031C122792734 @default.
- W1983676031 hasConceptScore W1983676031C127313418 @default.
- W1983676031 hasConceptScore W1983676031C146599234 @default.
- W1983676031 hasConceptScore W1983676031C150547873 @default.
- W1983676031 hasConceptScore W1983676031C151730666 @default.
- W1983676031 hasConceptScore W1983676031C154945302 @default.
- W1983676031 hasConceptScore W1983676031C165205528 @default.
- W1983676031 hasConceptScore W1983676031C186295008 @default.
- W1983676031 hasConceptScore W1983676031C205649164 @default.
- W1983676031 hasConceptScore W1983676031C41008148 @default.
- W1983676031 hasConceptScore W1983676031C41856607 @default.
- W1983676031 hasConceptScore W1983676031C50644808 @default.
- W1983676031 hasConceptScore W1983676031C58640448 @default.
- W1983676031 hasConceptScore W1983676031C62649853 @default.
- W1983676031 hasConceptScore W1983676031C98856871 @default.
- W1983676031 hasLocation W19836760311 @default.
- W1983676031 hasOpenAccess W1983676031 @default.
- W1983676031 hasPrimaryLocation W19836760311 @default.
- W1983676031 hasRelatedWork W1971903373 @default.
- W1983676031 hasRelatedWork W1978633116 @default.
- W1983676031 hasRelatedWork W2099708327 @default.
- W1983676031 hasRelatedWork W2147144012 @default.
- W1983676031 hasRelatedWork W2362610917 @default.
- W1983676031 hasRelatedWork W2386798299 @default.
- W1983676031 hasRelatedWork W2530061427 @default.
- W1983676031 hasRelatedWork W2627821436 @default.
- W1983676031 hasRelatedWork W2942760761 @default.
- W1983676031 hasRelatedWork W3197354770 @default.
- W1983676031 hasVolume "145-146" @default.