Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983722797> ?p ?o ?g. }
- W1983722797 endingPage "1007" @default.
- W1983722797 startingPage "993" @default.
- W1983722797 abstract "Adjustment for baseline variables in a randomized trial can increase power to detect a treatment effect. However, when baseline data are partly missing, analysis of complete cases is inefficient. We consider various possible improvements in the case of normally distributed baseline and outcome variables. Joint modelling of baseline and outcome is the most efficient method. Mean imputation is an excellent alternative, subject to three conditions. Firstly, if baseline and outcome are correlated more than about 0.6 then weighting should be used to allow for the greater information from complete cases. Secondly, imputation should be carried out in a deterministic way, using other baseline variables if possible, but not using randomized arm or outcome. Thirdly, if baselines are not missing completely at random, then a dummy variable for missingness should be included as a covariate (the missing indicator method). The methods are illustrated in a randomized trial in community psychiatry. Copyright © 2004 John Wiley & Sons, Ltd." @default.
- W1983722797 created "2016-06-24" @default.
- W1983722797 creator A5007606690 @default.
- W1983722797 creator A5058039205 @default.
- W1983722797 date "2005-01-01" @default.
- W1983722797 modified "2023-10-18" @default.
- W1983722797 title "Adjusting for partially missing baseline measurements in randomized trials" @default.
- W1983722797 cites W1573823453 @default.
- W1983722797 cites W1939661978 @default.
- W1983722797 cites W1966428349 @default.
- W1983722797 cites W1969706498 @default.
- W1983722797 cites W1975780287 @default.
- W1983722797 cites W1999436380 @default.
- W1983722797 cites W2012305308 @default.
- W1983722797 cites W2016619745 @default.
- W1983722797 cites W2039811614 @default.
- W1983722797 cites W2043458654 @default.
- W1983722797 cites W2050762021 @default.
- W1983722797 cites W2052096722 @default.
- W1983722797 cites W2057426371 @default.
- W1983722797 cites W2059711709 @default.
- W1983722797 cites W2061839154 @default.
- W1983722797 cites W2070337513 @default.
- W1983722797 cites W2075512798 @default.
- W1983722797 cites W2086848432 @default.
- W1983722797 cites W2096330702 @default.
- W1983722797 cites W2107544837 @default.
- W1983722797 cites W2108233388 @default.
- W1983722797 cites W2112556364 @default.
- W1983722797 cites W2114478418 @default.
- W1983722797 cites W2115086661 @default.
- W1983722797 cites W2124250704 @default.
- W1983722797 cites W2127841934 @default.
- W1983722797 cites W2142960568 @default.
- W1983722797 cites W2152528934 @default.
- W1983722797 cites W2160326210 @default.
- W1983722797 cites W2166561686 @default.
- W1983722797 cites W2491602871 @default.
- W1983722797 cites W2914381718 @default.
- W1983722797 cites W4235700900 @default.
- W1983722797 doi "https://doi.org/10.1002/sim.1981" @default.
- W1983722797 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15570623" @default.
- W1983722797 hasPublicationYear "2005" @default.
- W1983722797 type Work @default.
- W1983722797 sameAs 1983722797 @default.
- W1983722797 citedByCount "286" @default.
- W1983722797 countsByYear W19837227972012 @default.
- W1983722797 countsByYear W19837227972013 @default.
- W1983722797 countsByYear W19837227972014 @default.
- W1983722797 countsByYear W19837227972015 @default.
- W1983722797 countsByYear W19837227972016 @default.
- W1983722797 countsByYear W19837227972017 @default.
- W1983722797 countsByYear W19837227972018 @default.
- W1983722797 countsByYear W19837227972019 @default.
- W1983722797 countsByYear W19837227972020 @default.
- W1983722797 countsByYear W19837227972021 @default.
- W1983722797 countsByYear W19837227972022 @default.
- W1983722797 countsByYear W19837227972023 @default.
- W1983722797 crossrefType "journal-article" @default.
- W1983722797 hasAuthorship W1983722797A5007606690 @default.
- W1983722797 hasAuthorship W1983722797A5058039205 @default.
- W1983722797 hasConcept C105795698 @default.
- W1983722797 hasConcept C111368507 @default.
- W1983722797 hasConcept C119043178 @default.
- W1983722797 hasConcept C126838900 @default.
- W1983722797 hasConcept C12725497 @default.
- W1983722797 hasConcept C127313418 @default.
- W1983722797 hasConcept C141071460 @default.
- W1983722797 hasConcept C144237770 @default.
- W1983722797 hasConcept C148220186 @default.
- W1983722797 hasConcept C149782125 @default.
- W1983722797 hasConcept C168563851 @default.
- W1983722797 hasConcept C183115368 @default.
- W1983722797 hasConcept C33923547 @default.
- W1983722797 hasConcept C41008148 @default.
- W1983722797 hasConcept C58041806 @default.
- W1983722797 hasConcept C71924100 @default.
- W1983722797 hasConcept C9357733 @default.
- W1983722797 hasConceptScore W1983722797C105795698 @default.
- W1983722797 hasConceptScore W1983722797C111368507 @default.
- W1983722797 hasConceptScore W1983722797C119043178 @default.
- W1983722797 hasConceptScore W1983722797C126838900 @default.
- W1983722797 hasConceptScore W1983722797C12725497 @default.
- W1983722797 hasConceptScore W1983722797C127313418 @default.
- W1983722797 hasConceptScore W1983722797C141071460 @default.
- W1983722797 hasConceptScore W1983722797C144237770 @default.
- W1983722797 hasConceptScore W1983722797C148220186 @default.
- W1983722797 hasConceptScore W1983722797C149782125 @default.
- W1983722797 hasConceptScore W1983722797C168563851 @default.
- W1983722797 hasConceptScore W1983722797C183115368 @default.
- W1983722797 hasConceptScore W1983722797C33923547 @default.
- W1983722797 hasConceptScore W1983722797C41008148 @default.
- W1983722797 hasConceptScore W1983722797C58041806 @default.
- W1983722797 hasConceptScore W1983722797C71924100 @default.
- W1983722797 hasConceptScore W1983722797C9357733 @default.
- W1983722797 hasIssue "7" @default.
- W1983722797 hasLocation W19837227971 @default.
- W1983722797 hasLocation W19837227972 @default.