Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983775324> ?p ?o ?g. }
- W1983775324 endingPage "400" @default.
- W1983775324 startingPage "388" @default.
- W1983775324 abstract "Accurate rainfall data are of prime importance for many environmental applications. To provide spatially distributed rainfall data, point measurements are interpolated. However, in low density measurement networks, the use of different interpolation methods may result in large differences and hence in deviations from the actual spatial distribution of rainfall. Our study aims at analyzing different rainfall interpolation schemes with regard to their suitability to produce spatial rainfall estimates in a monsoon dominated region with scarce rainfall measurements. The study was carried out in the meso-scale catchment of the Mula and the Mutha Rivers (2036 km2) upstream of the city of Pune, India. Rainfall data from 16 rain gauges were spatially interpolated using seven different methods, including Thiessen polygons, statistical, and geostatistical approaches. The two most suitable covariates for rainfall interpolation were identified as (i) distance in wind direction from the main orographic barrier and as (ii) a 0.05° pattern of mean annual rainfall derived from satellite data acquired by the Tropical Rainfall Measuring Mission (TRMM). Consequently, these two covariates were used in the regression-based interpolation approaches. The quality of the different methods was assessed using a two step validation approach: (i) Cross-validation was used to evaluate the capability to reproduce measured data. (ii) Spatially integrated interpolation performance was assessed by using a hydrologic model to calculate runoff and compare modeled to measured runoff. By this assessment, the regression-based methods showed the best performance. We found that the choice of the covariate had a significant impact on precipitation and runoff amounts, as well as on the temporal course of runoff events. Our results show, that the decision on the suitable interpolation scheme should not only be based on the comparison with point measurements, but should also take the representativeness of the given measurement network as well as of the interpolated spatial rainfall distribution into account. The successful application of regression-based interpolation methods using a high resolution TRMM pattern as covariate is very promising as it is transferable to other data scarce regions." @default.
- W1983775324 created "2016-06-24" @default.
- W1983775324 creator A5055386114 @default.
- W1983775324 creator A5069831507 @default.
- W1983775324 creator A5078434897 @default.
- W1983775324 creator A5084467253 @default.
- W1983775324 creator A5090493626 @default.
- W1983775324 date "2012-09-01" @default.
- W1983775324 modified "2023-10-03" @default.
- W1983775324 title "Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions" @default.
- W1983775324 cites W1977816647 @default.
- W1983775324 cites W1978370815 @default.
- W1983775324 cites W1983724666 @default.
- W1983775324 cites W1989182011 @default.
- W1983775324 cites W1997294768 @default.
- W1983775324 cites W2002368485 @default.
- W1983775324 cites W2004040630 @default.
- W1983775324 cites W2004652810 @default.
- W1983775324 cites W2007873570 @default.
- W1983775324 cites W2013174740 @default.
- W1983775324 cites W2013484195 @default.
- W1983775324 cites W2014399341 @default.
- W1983775324 cites W2022113163 @default.
- W1983775324 cites W2022741530 @default.
- W1983775324 cites W2025612638 @default.
- W1983775324 cites W2026746610 @default.
- W1983775324 cites W2026927482 @default.
- W1983775324 cites W2033904036 @default.
- W1983775324 cites W2034100314 @default.
- W1983775324 cites W2035871099 @default.
- W1983775324 cites W2037609456 @default.
- W1983775324 cites W2044430104 @default.
- W1983775324 cites W2048337280 @default.
- W1983775324 cites W2051774590 @default.
- W1983775324 cites W2058776061 @default.
- W1983775324 cites W2058998445 @default.
- W1983775324 cites W2059918964 @default.
- W1983775324 cites W2060827023 @default.
- W1983775324 cites W2067509986 @default.
- W1983775324 cites W2072664831 @default.
- W1983775324 cites W2074486288 @default.
- W1983775324 cites W2080711841 @default.
- W1983775324 cites W2082864892 @default.
- W1983775324 cites W2094771894 @default.
- W1983775324 cites W2094973654 @default.
- W1983775324 cites W2114991930 @default.
- W1983775324 cites W2125163611 @default.
- W1983775324 cites W2127584806 @default.
- W1983775324 cites W2139873467 @default.
- W1983775324 cites W2140994193 @default.
- W1983775324 cites W2144051257 @default.
- W1983775324 cites W2144215816 @default.
- W1983775324 cites W2152196500 @default.
- W1983775324 cites W2165669413 @default.
- W1983775324 cites W2334371651 @default.
- W1983775324 doi "https://doi.org/10.1016/j.jhydrol.2012.07.026" @default.
- W1983775324 hasPublicationYear "2012" @default.
- W1983775324 type Work @default.
- W1983775324 sameAs 1983775324 @default.
- W1983775324 citedByCount "192" @default.
- W1983775324 countsByYear W19837753242013 @default.
- W1983775324 countsByYear W19837753242014 @default.
- W1983775324 countsByYear W19837753242015 @default.
- W1983775324 countsByYear W19837753242016 @default.
- W1983775324 countsByYear W19837753242017 @default.
- W1983775324 countsByYear W19837753242018 @default.
- W1983775324 countsByYear W19837753242019 @default.
- W1983775324 countsByYear W19837753242020 @default.
- W1983775324 countsByYear W19837753242021 @default.
- W1983775324 countsByYear W19837753242022 @default.
- W1983775324 countsByYear W19837753242023 @default.
- W1983775324 crossrefType "journal-article" @default.
- W1983775324 hasAuthorship W1983775324A5055386114 @default.
- W1983775324 hasAuthorship W1983775324A5069831507 @default.
- W1983775324 hasAuthorship W1983775324A5078434897 @default.
- W1983775324 hasAuthorship W1983775324A5084467253 @default.
- W1983775324 hasAuthorship W1983775324A5090493626 @default.
- W1983775324 hasBestOaLocation W19837753242 @default.
- W1983775324 hasConcept C105795698 @default.
- W1983775324 hasConcept C107054158 @default.
- W1983775324 hasConcept C119043178 @default.
- W1983775324 hasConcept C120961793 @default.
- W1983775324 hasConcept C121684516 @default.
- W1983775324 hasConcept C134295995 @default.
- W1983775324 hasConcept C137800194 @default.
- W1983775324 hasConcept C138695830 @default.
- W1983775324 hasConcept C153294291 @default.
- W1983775324 hasConcept C18903297 @default.
- W1983775324 hasConcept C203332170 @default.
- W1983775324 hasConcept C205203396 @default.
- W1983775324 hasConcept C205649164 @default.
- W1983775324 hasConcept C33923547 @default.
- W1983775324 hasConcept C39432304 @default.
- W1983775324 hasConcept C41008148 @default.
- W1983775324 hasConcept C502989409 @default.
- W1983775324 hasConcept C50477045 @default.
- W1983775324 hasConcept C81692654 @default.
- W1983775324 hasConcept C86803240 @default.