Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983792014> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W1983792014 abstract "Many classification techniques work well only under a common assumption that the training and test data are drawn from the same feature space and the same distribution. However, big velocity data usually show disobedience of this assumption. For example, in the field of web-document classification, new document is continuously emerging every day. Transfer learning aims at leveraging the knowledge in labeled source domains to predict the unlabeled data in a target domain, where the distributions are different in domains. As one of the important research directions of transfer learning, one kind of approaches focus on the correspondence between pivot features and all the other specific features from different domains, to extract some relevant features that may reduce the difference between the domains, have attracted wide attention and study. However, the limitation caused by the vague meanings in different domains prevents these algorithms from further improvement. To tackle this problem, we propose a cross-domain canonical correlation analysis algorithm called CD-CCA by applying Canonical Correlation Analysis (CCA) to transfer learning. CD-CCA can learn a semantic space of multi-view correspondences from different domains respectively and transfer the knowledge by dimensionality reduction in a multi-view way. Experimental results on the 144×6 classification problems in 20Newsgroups, show that CD-CCA can significantly improve the prediction accuracy." @default.
- W1983792014 created "2016-06-24" @default.
- W1983792014 creator A5011877804 @default.
- W1983792014 creator A5075925664 @default.
- W1983792014 date "2013-10-01" @default.
- W1983792014 modified "2023-10-16" @default.
- W1983792014 title "Classification of big velocity data via cross-domain Canonical Correlation Analysis" @default.
- W1983792014 cites W2131953535 @default.
- W1983792014 cites W2153635508 @default.
- W1983792014 cites W2158108973 @default.
- W1983792014 cites W2165698076 @default.
- W1983792014 cites W4229709775 @default.
- W1983792014 doi "https://doi.org/10.1109/bigdata.2013.6691612" @default.
- W1983792014 hasPublicationYear "2013" @default.
- W1983792014 type Work @default.
- W1983792014 sameAs 1983792014 @default.
- W1983792014 citedByCount "6" @default.
- W1983792014 countsByYear W19837920142015 @default.
- W1983792014 countsByYear W19837920142017 @default.
- W1983792014 countsByYear W19837920142019 @default.
- W1983792014 countsByYear W19837920142021 @default.
- W1983792014 crossrefType "proceedings-article" @default.
- W1983792014 hasAuthorship W1983792014A5011877804 @default.
- W1983792014 hasAuthorship W1983792014A5075925664 @default.
- W1983792014 hasConcept C111030470 @default.
- W1983792014 hasConcept C111919701 @default.
- W1983792014 hasConcept C117220453 @default.
- W1983792014 hasConcept C119857082 @default.
- W1983792014 hasConcept C120665830 @default.
- W1983792014 hasConcept C121332964 @default.
- W1983792014 hasConcept C124101348 @default.
- W1983792014 hasConcept C134306372 @default.
- W1983792014 hasConcept C150899416 @default.
- W1983792014 hasConcept C153180895 @default.
- W1983792014 hasConcept C153874254 @default.
- W1983792014 hasConcept C154945302 @default.
- W1983792014 hasConcept C192209626 @default.
- W1983792014 hasConcept C202444582 @default.
- W1983792014 hasConcept C2524010 @default.
- W1983792014 hasConcept C2778572836 @default.
- W1983792014 hasConcept C33923547 @default.
- W1983792014 hasConcept C36503486 @default.
- W1983792014 hasConcept C41008148 @default.
- W1983792014 hasConcept C70518039 @default.
- W1983792014 hasConcept C9652623 @default.
- W1983792014 hasConceptScore W1983792014C111030470 @default.
- W1983792014 hasConceptScore W1983792014C111919701 @default.
- W1983792014 hasConceptScore W1983792014C117220453 @default.
- W1983792014 hasConceptScore W1983792014C119857082 @default.
- W1983792014 hasConceptScore W1983792014C120665830 @default.
- W1983792014 hasConceptScore W1983792014C121332964 @default.
- W1983792014 hasConceptScore W1983792014C124101348 @default.
- W1983792014 hasConceptScore W1983792014C134306372 @default.
- W1983792014 hasConceptScore W1983792014C150899416 @default.
- W1983792014 hasConceptScore W1983792014C153180895 @default.
- W1983792014 hasConceptScore W1983792014C153874254 @default.
- W1983792014 hasConceptScore W1983792014C154945302 @default.
- W1983792014 hasConceptScore W1983792014C192209626 @default.
- W1983792014 hasConceptScore W1983792014C202444582 @default.
- W1983792014 hasConceptScore W1983792014C2524010 @default.
- W1983792014 hasConceptScore W1983792014C2778572836 @default.
- W1983792014 hasConceptScore W1983792014C33923547 @default.
- W1983792014 hasConceptScore W1983792014C36503486 @default.
- W1983792014 hasConceptScore W1983792014C41008148 @default.
- W1983792014 hasConceptScore W1983792014C70518039 @default.
- W1983792014 hasConceptScore W1983792014C9652623 @default.
- W1983792014 hasLocation W19837920141 @default.
- W1983792014 hasOpenAccess W1983792014 @default.
- W1983792014 hasPrimaryLocation W19837920141 @default.
- W1983792014 hasRelatedWork W1965275221 @default.
- W1983792014 hasRelatedWork W1977087079 @default.
- W1983792014 hasRelatedWork W2031094618 @default.
- W1983792014 hasRelatedWork W2339674921 @default.
- W1983792014 hasRelatedWork W3110687914 @default.
- W1983792014 hasRelatedWork W3133411644 @default.
- W1983792014 hasRelatedWork W3211035526 @default.
- W1983792014 hasRelatedWork W4220663171 @default.
- W1983792014 hasRelatedWork W4303856621 @default.
- W1983792014 hasRelatedWork W4308262314 @default.
- W1983792014 isParatext "false" @default.
- W1983792014 isRetracted "false" @default.
- W1983792014 magId "1983792014" @default.
- W1983792014 workType "article" @default.