Matches in SemOpenAlex for { <https://semopenalex.org/work/W1983811604> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W1983811604 abstract "This paper proposes a new model fit-type edge feature measurement method. The characteristic of the proposed method is that it introduces a blurred edge model which matches well with a gray-level pattern of an edge in an image actually observed. The blurred edge model is constructed by using not only edge features, which are the edge position and orientation within the pixel, but also the point spread function which expresses the image degradation during the image recording process as parameters. By using this model, the gray level of the multiple pixels near the edge for the various edge feature values is calculated, and a map is obtained from the edge features to the gray-level pattern.Next, the inverse map which obtains edge features from a gray-level pattern is obtained in advance through learning by using error backpropagation-type neural networks consisting of three layers. By using the obtained inverse map, the edge features are determined from the gray-level pattern of the actually observed image.Conventionally, since it was necessary to obtain this inverse map analytically, the edge model that could be used was restricted to the step-edge type. On the other hand, with the method being proposed which utilizes the neural networks, an arbitrary optimal edge model for an individual image recording device can be used. For this reason, edge features can be determined precisely with this method even from local information. Many measurement experiments which changed the edge position and orientation were performed and the effectiveness of this method was confirmed." @default.
- W1983811604 created "2016-06-24" @default.
- W1983811604 creator A5003412542 @default.
- W1983811604 creator A5066492149 @default.
- W1983811604 creator A5066806581 @default.
- W1983811604 creator A5086865425 @default.
- W1983811604 date "1992-01-01" @default.
- W1983811604 modified "2023-09-24" @default.
- W1983811604 title "Edge feature determination by using neural networks based on a blurred edge model" @default.
- W1983811604 cites W2028750032 @default.
- W1983811604 cites W2035459724 @default.
- W1983811604 cites W2035856912 @default.
- W1983811604 cites W2067953144 @default.
- W1983811604 cites W2078085827 @default.
- W1983811604 cites W2089269779 @default.
- W1983811604 cites W2095364258 @default.
- W1983811604 cites W2095905764 @default.
- W1983811604 cites W2096889917 @default.
- W1983811604 cites W2096995491 @default.
- W1983811604 cites W2102071159 @default.
- W1983811604 cites W2113511941 @default.
- W1983811604 cites W2131814685 @default.
- W1983811604 doi "https://doi.org/10.1002/scj.4690230406" @default.
- W1983811604 hasPublicationYear "1992" @default.
- W1983811604 type Work @default.
- W1983811604 sameAs 1983811604 @default.
- W1983811604 citedByCount "0" @default.
- W1983811604 crossrefType "journal-article" @default.
- W1983811604 hasAuthorship W1983811604A5003412542 @default.
- W1983811604 hasAuthorship W1983811604A5066492149 @default.
- W1983811604 hasAuthorship W1983811604A5066806581 @default.
- W1983811604 hasAuthorship W1983811604A5086865425 @default.
- W1983811604 hasConcept C115961682 @default.
- W1983811604 hasConcept C138885662 @default.
- W1983811604 hasConcept C153180895 @default.
- W1983811604 hasConcept C154945302 @default.
- W1983811604 hasConcept C155032097 @default.
- W1983811604 hasConcept C160633673 @default.
- W1983811604 hasConcept C162307627 @default.
- W1983811604 hasConcept C193536780 @default.
- W1983811604 hasConcept C2776401178 @default.
- W1983811604 hasConcept C31972630 @default.
- W1983811604 hasConcept C41008148 @default.
- W1983811604 hasConcept C41895202 @default.
- W1983811604 hasConcept C50644808 @default.
- W1983811604 hasConcept C9417928 @default.
- W1983811604 hasConceptScore W1983811604C115961682 @default.
- W1983811604 hasConceptScore W1983811604C138885662 @default.
- W1983811604 hasConceptScore W1983811604C153180895 @default.
- W1983811604 hasConceptScore W1983811604C154945302 @default.
- W1983811604 hasConceptScore W1983811604C155032097 @default.
- W1983811604 hasConceptScore W1983811604C160633673 @default.
- W1983811604 hasConceptScore W1983811604C162307627 @default.
- W1983811604 hasConceptScore W1983811604C193536780 @default.
- W1983811604 hasConceptScore W1983811604C2776401178 @default.
- W1983811604 hasConceptScore W1983811604C31972630 @default.
- W1983811604 hasConceptScore W1983811604C41008148 @default.
- W1983811604 hasConceptScore W1983811604C41895202 @default.
- W1983811604 hasConceptScore W1983811604C50644808 @default.
- W1983811604 hasConceptScore W1983811604C9417928 @default.
- W1983811604 hasLocation W19838116041 @default.
- W1983811604 hasOpenAccess W1983811604 @default.
- W1983811604 hasPrimaryLocation W19838116041 @default.
- W1983811604 hasRelatedWork W1830240426 @default.
- W1983811604 hasRelatedWork W1869188483 @default.
- W1983811604 hasRelatedWork W1978773264 @default.
- W1983811604 hasRelatedWork W1995541326 @default.
- W1983811604 hasRelatedWork W2024418536 @default.
- W1983811604 hasRelatedWork W2066973196 @default.
- W1983811604 hasRelatedWork W2111068228 @default.
- W1983811604 hasRelatedWork W2116892788 @default.
- W1983811604 hasRelatedWork W2120128981 @default.
- W1983811604 hasRelatedWork W2130904385 @default.
- W1983811604 hasRelatedWork W2153965265 @default.
- W1983811604 hasRelatedWork W2159700424 @default.
- W1983811604 hasRelatedWork W2160234697 @default.
- W1983811604 hasRelatedWork W2162449045 @default.
- W1983811604 hasRelatedWork W2171907509 @default.
- W1983811604 hasRelatedWork W2345888644 @default.
- W1983811604 hasRelatedWork W3200015404 @default.
- W1983811604 hasRelatedWork W629791399 @default.
- W1983811604 hasRelatedWork W2832880434 @default.
- W1983811604 hasRelatedWork W2840219166 @default.
- W1983811604 isParatext "false" @default.
- W1983811604 isRetracted "false" @default.
- W1983811604 magId "1983811604" @default.
- W1983811604 workType "article" @default.