Matches in SemOpenAlex for { <https://semopenalex.org/work/W1984379652> ?p ?o ?g. }
- W1984379652 endingPage "51" @default.
- W1984379652 startingPage "42" @default.
- W1984379652 abstract "The investigation was conducted to develop a hyperspectral imaging system in the near infrared (NIR) region (900–1700 nm) to predict the moisture content, pH and color in cooked, pre-sliced turkey hams. Hyperspectral images were acquired by scanning the ham slices (900–1700 nm) originated from different quality grade of turkey hams. Spectral data were then extracted and analyzed using partial least-squares (PLSs) regression, as a multivariate calibration method, to reduce the high dimensionality of the data and to correlate the NIR reflectance spectra with quality attributes of the samples considered. Instead of using a wide range of spectra, the number of wavebands was reduced for more stable, comprehensive and faster model in the subsequent multispectral imaging system. From this point of view, important wavelengths were selected to improve the predictive power of the calibration models as well as to simplify the model by avoiding repetition of information or redundancies. With the help of PLS regression analysis, nine wavelengths (927, 944, 1004, 1058, 1108, 1212, 1259, 1362 and 1406 nm) were selected as the optimum wavelengths for moisture prediction, eight wavelengths (927, 947, 1004, 1071, 1121, 1255, 1312 and 1641 nm) for pH prediction and nine wavelengths (914, 931, 991, 1115, 1164, 1218, 1282, 1362 and 1638 nm) were identified for color (a*) prediction. With the identified reduced number wavelengths, good coefficients of determination (R2) of 0.88, 0.81 and 0.74 with RMSECV of 2.51, 0.02 and 0.35 for moisture, pH and color, respectively, were achieved, reflecting reasonable accuracy and robustness of the models." @default.
- W1984379652 created "2016-06-24" @default.
- W1984379652 creator A5001945431 @default.
- W1984379652 creator A5058678580 @default.
- W1984379652 creator A5082461938 @default.
- W1984379652 date "2013-07-01" @default.
- W1984379652 modified "2023-09-26" @default.
- W1984379652 title "Prediction of moisture, color and pH in cooked, pre-sliced turkey hams by NIR hyperspectral imaging system" @default.
- W1984379652 cites W1499624546 @default.
- W1984379652 cites W1531970760 @default.
- W1984379652 cites W1965252567 @default.
- W1984379652 cites W1967645350 @default.
- W1984379652 cites W1970078894 @default.
- W1984379652 cites W1971290924 @default.
- W1984379652 cites W1971973703 @default.
- W1984379652 cites W1972703100 @default.
- W1984379652 cites W1974095058 @default.
- W1984379652 cites W1974806325 @default.
- W1984379652 cites W1977640095 @default.
- W1984379652 cites W1977678768 @default.
- W1984379652 cites W1987261133 @default.
- W1984379652 cites W1988199292 @default.
- W1984379652 cites W1989366050 @default.
- W1984379652 cites W1989807412 @default.
- W1984379652 cites W1992875080 @default.
- W1984379652 cites W1995488333 @default.
- W1984379652 cites W1995634770 @default.
- W1984379652 cites W1995919450 @default.
- W1984379652 cites W1995966489 @default.
- W1984379652 cites W1996865064 @default.
- W1984379652 cites W1997387950 @default.
- W1984379652 cites W2004749736 @default.
- W1984379652 cites W2007104720 @default.
- W1984379652 cites W2007698055 @default.
- W1984379652 cites W2012919346 @default.
- W1984379652 cites W2013667810 @default.
- W1984379652 cites W2014274999 @default.
- W1984379652 cites W2025939665 @default.
- W1984379652 cites W2031519168 @default.
- W1984379652 cites W2034202472 @default.
- W1984379652 cites W2038615705 @default.
- W1984379652 cites W2038875453 @default.
- W1984379652 cites W2038903172 @default.
- W1984379652 cites W2040162196 @default.
- W1984379652 cites W2040163085 @default.
- W1984379652 cites W2040629518 @default.
- W1984379652 cites W2042494231 @default.
- W1984379652 cites W2043222612 @default.
- W1984379652 cites W2048280297 @default.
- W1984379652 cites W2051100938 @default.
- W1984379652 cites W2056637853 @default.
- W1984379652 cites W2058172523 @default.
- W1984379652 cites W2059271138 @default.
- W1984379652 cites W2059665632 @default.
- W1984379652 cites W2061724928 @default.
- W1984379652 cites W2062385034 @default.
- W1984379652 cites W2065084513 @default.
- W1984379652 cites W2066931949 @default.
- W1984379652 cites W2069978330 @default.
- W1984379652 cites W2073082752 @default.
- W1984379652 cites W2074504777 @default.
- W1984379652 cites W2078919324 @default.
- W1984379652 cites W2085363989 @default.
- W1984379652 cites W2090630135 @default.
- W1984379652 cites W2092557869 @default.
- W1984379652 cites W2105262278 @default.
- W1984379652 cites W2122130178 @default.
- W1984379652 cites W2134356099 @default.
- W1984379652 cites W2139086955 @default.
- W1984379652 cites W2145106362 @default.
- W1984379652 cites W2161231361 @default.
- W1984379652 cites W2204536630 @default.
- W1984379652 cites W2302723388 @default.
- W1984379652 doi "https://doi.org/10.1016/j.jfoodeng.2013.02.001" @default.
- W1984379652 hasPublicationYear "2013" @default.
- W1984379652 type Work @default.
- W1984379652 sameAs 1984379652 @default.
- W1984379652 citedByCount "118" @default.
- W1984379652 countsByYear W19843796522013 @default.
- W1984379652 countsByYear W19843796522014 @default.
- W1984379652 countsByYear W19843796522015 @default.
- W1984379652 countsByYear W19843796522016 @default.
- W1984379652 countsByYear W19843796522017 @default.
- W1984379652 countsByYear W19843796522018 @default.
- W1984379652 countsByYear W19843796522019 @default.
- W1984379652 countsByYear W19843796522020 @default.
- W1984379652 countsByYear W19843796522021 @default.
- W1984379652 countsByYear W19843796522022 @default.
- W1984379652 countsByYear W19843796522023 @default.
- W1984379652 crossrefType "journal-article" @default.
- W1984379652 hasAuthorship W1984379652A5001945431 @default.
- W1984379652 hasAuthorship W1984379652A5058678580 @default.
- W1984379652 hasAuthorship W1984379652A5082461938 @default.
- W1984379652 hasConcept C105795698 @default.
- W1984379652 hasConcept C113196181 @default.
- W1984379652 hasConcept C120665830 @default.
- W1984379652 hasConcept C121332964 @default.
- W1984379652 hasConcept C127313418 @default.