Matches in SemOpenAlex for { <https://semopenalex.org/work/W1984584655> ?p ?o ?g. }
- W1984584655 endingPage "117" @default.
- W1984584655 startingPage "103" @default.
- W1984584655 abstract "In numerical dosimetry, the recent advances in high performance computing led to a strong reduction of the required computational time to assess the specific absorption rate (SAR) characterizing the human exposure to electromagnetic waves. However, this procedure remains time-consuming and a single simulation can request several hours. As a consequence, the influence of uncertain input parameters on the SAR cannot be analyzed using crude Monte Carlo simulation. The solution presented here to perform such an analysis is surrogate modeling. This paper proposes a novel approach to build such a surrogate model from a design of experiments. Considering a sparse representation of the polynomial chaos expansions using least-angle regression as a selection algorithm to retain the most influential polynomials, this paper proposes to use the selected polynomials as regression functions for the universal Kriging model. The leave-one-out cross validation is used to select the optimal number of polynomials in the deterministic part of the Kriging model. The proposed approach, called LARS-Kriging-PC modeling, is applied to three benchmark examples and then to a full-scale metamodeling problem involving the exposure of a numerical fetus model to a femtocell device. The performances of the LARS-Kriging-PC are compared to an ordinary Kriging model and to a classical sparse polynomial chaos expansion. The LARS-Kriging-PC appears to have better performances than the two other approaches. A significant accuracy improvement is observed compared to the ordinary Kriging or to the sparse polynomial chaos depending on the studied case. This approach seems to be an optimal solution between the two other classical approaches. A global sensitivity analysis is finally performed on the LARS-Kriging-PC model of the fetus exposure problem." @default.
- W1984584655 created "2016-06-24" @default.
- W1984584655 creator A5010820185 @default.
- W1984584655 creator A5011242223 @default.
- W1984584655 creator A5024390567 @default.
- W1984584655 creator A5052726624 @default.
- W1984584655 creator A5056808144 @default.
- W1984584655 date "2015-04-01" @default.
- W1984584655 modified "2023-10-18" @default.
- W1984584655 title "A new surrogate modeling technique combining Kriging and polynomial chaos expansions – Application to uncertainty analysis in computational dosimetry" @default.
- W1984584655 cites W1510052597 @default.
- W1984584655 cites W1973412675 @default.
- W1984584655 cites W1980635834 @default.
- W1984584655 cites W1983331540 @default.
- W1984584655 cites W1994093475 @default.
- W1984584655 cites W1999000678 @default.
- W1984584655 cites W2001767627 @default.
- W1984584655 cites W2003017040 @default.
- W1984584655 cites W2003553868 @default.
- W1984584655 cites W2007535697 @default.
- W1984584655 cites W2010737928 @default.
- W1984584655 cites W2013191144 @default.
- W1984584655 cites W2014251367 @default.
- W1984584655 cites W2014910287 @default.
- W1984584655 cites W2018159038 @default.
- W1984584655 cites W2034831667 @default.
- W1984584655 cites W2043170151 @default.
- W1984584655 cites W2044458183 @default.
- W1984584655 cites W2045355467 @default.
- W1984584655 cites W2049774453 @default.
- W1984584655 cites W2056558085 @default.
- W1984584655 cites W2063978378 @default.
- W1984584655 cites W2070110665 @default.
- W1984584655 cites W2083415217 @default.
- W1984584655 cites W2092127669 @default.
- W1984584655 cites W2101589741 @default.
- W1984584655 cites W2102059395 @default.
- W1984584655 cites W2106390386 @default.
- W1984584655 cites W2113127808 @default.
- W1984584655 cites W2115620436 @default.
- W1984584655 cites W2119447752 @default.
- W1984584655 cites W2133118715 @default.
- W1984584655 cites W2148743128 @default.
- W1984584655 cites W2162501626 @default.
- W1984584655 cites W2167720109 @default.
- W1984584655 cites W2321957512 @default.
- W1984584655 cites W3126133291 @default.
- W1984584655 cites W4249753629 @default.
- W1984584655 cites W4249991458 @default.
- W1984584655 doi "https://doi.org/10.1016/j.jcp.2015.01.034" @default.
- W1984584655 hasPublicationYear "2015" @default.
- W1984584655 type Work @default.
- W1984584655 sameAs 1984584655 @default.
- W1984584655 citedByCount "181" @default.
- W1984584655 countsByYear W19845846552015 @default.
- W1984584655 countsByYear W19845846552016 @default.
- W1984584655 countsByYear W19845846552017 @default.
- W1984584655 countsByYear W19845846552018 @default.
- W1984584655 countsByYear W19845846552019 @default.
- W1984584655 countsByYear W19845846552020 @default.
- W1984584655 countsByYear W19845846552021 @default.
- W1984584655 countsByYear W19845846552022 @default.
- W1984584655 countsByYear W19845846552023 @default.
- W1984584655 crossrefType "journal-article" @default.
- W1984584655 hasAuthorship W1984584655A5010820185 @default.
- W1984584655 hasAuthorship W1984584655A5011242223 @default.
- W1984584655 hasAuthorship W1984584655A5024390567 @default.
- W1984584655 hasAuthorship W1984584655A5052726624 @default.
- W1984584655 hasAuthorship W1984584655A5056808144 @default.
- W1984584655 hasBestOaLocation W19845846551 @default.
- W1984584655 hasConcept C105795698 @default.
- W1984584655 hasConcept C11413529 @default.
- W1984584655 hasConcept C119857082 @default.
- W1984584655 hasConcept C120068334 @default.
- W1984584655 hasConcept C126255220 @default.
- W1984584655 hasConcept C131675550 @default.
- W1984584655 hasConcept C13280743 @default.
- W1984584655 hasConcept C134306372 @default.
- W1984584655 hasConcept C152877465 @default.
- W1984584655 hasConcept C154881674 @default.
- W1984584655 hasConcept C185798385 @default.
- W1984584655 hasConcept C19499675 @default.
- W1984584655 hasConcept C197656079 @default.
- W1984584655 hasConcept C205649164 @default.
- W1984584655 hasConcept C28826006 @default.
- W1984584655 hasConcept C32230216 @default.
- W1984584655 hasConcept C33923547 @default.
- W1984584655 hasConcept C41008148 @default.
- W1984584655 hasConcept C81692654 @default.
- W1984584655 hasConcept C90119067 @default.
- W1984584655 hasConceptScore W1984584655C105795698 @default.
- W1984584655 hasConceptScore W1984584655C11413529 @default.
- W1984584655 hasConceptScore W1984584655C119857082 @default.
- W1984584655 hasConceptScore W1984584655C120068334 @default.
- W1984584655 hasConceptScore W1984584655C126255220 @default.
- W1984584655 hasConceptScore W1984584655C131675550 @default.
- W1984584655 hasConceptScore W1984584655C13280743 @default.
- W1984584655 hasConceptScore W1984584655C134306372 @default.