Matches in SemOpenAlex for { <https://semopenalex.org/work/W1984978840> ?p ?o ?g. }
- W1984978840 endingPage "75" @default.
- W1984978840 startingPage "75" @default.
- W1984978840 abstract "Achieving high match accuracy for a large variety of ontologies, considering a single matcher is often not sufficient for high match quality. Therefore, combining the corresponding weights for different semantic aspects, reflecting their different importance or contributions becomes unavoidable for ontology matching. Combining multiple measures into a single similarity metric has been traditionally solved using weights determined manually by an expert, or calculated through general methods e.g. average or sigmoid function, however this does not provide a flexible and self-configuring matching tool. In this paper, an intelligent combination using Artificial Neural Network ANN as a machine learning-based method to ascertain how to combine multiple similarity measures into a single aggregated metric with the final aim of improving the ontology alignment quality is proposed. XMap++ is applied to benchmark and anatomy tests at OAEI campaign 2012. Results show that neural network boosts the performance in most cases, and that the proposed novel approach is competitive with top-ranked system." @default.
- W1984978840 created "2016-06-24" @default.
- W1984978840 creator A5027431080 @default.
- W1984978840 creator A5091670421 @default.
- W1984978840 date "2013-01-01" @default.
- W1984978840 modified "2023-09-28" @default.
- W1984978840 title "Ontology alignment using artificial neural network for large-scale ontologies" @default.
- W1984978840 cites W110553042 @default.
- W1984978840 cites W127770223 @default.
- W1984978840 cites W136147141 @default.
- W1984978840 cites W1480700989 @default.
- W1984978840 cites W1514282332 @default.
- W1984978840 cites W1518761477 @default.
- W1984978840 cites W1528177290 @default.
- W1984978840 cites W1530162452 @default.
- W1984978840 cites W1591339381 @default.
- W1984978840 cites W1596947943 @default.
- W1984978840 cites W1597085899 @default.
- W1984978840 cites W161226219 @default.
- W1984978840 cites W1679882079 @default.
- W1984978840 cites W1964772738 @default.
- W1984978840 cites W1971209221 @default.
- W1984978840 cites W1982801501 @default.
- W1984978840 cites W1998839018 @default.
- W1984978840 cites W2007226769 @default.
- W1984978840 cites W2013093146 @default.
- W1984978840 cites W2020694521 @default.
- W1984978840 cites W2030103067 @default.
- W1984978840 cites W2033903777 @default.
- W1984978840 cites W2038721957 @default.
- W1984978840 cites W2044904950 @default.
- W1984978840 cites W2047029075 @default.
- W1984978840 cites W2050426625 @default.
- W1984978840 cites W2085797771 @default.
- W1984978840 cites W2086980839 @default.
- W1984978840 cites W2087779040 @default.
- W1984978840 cites W2102059542 @default.
- W1984978840 cites W2114538147 @default.
- W1984978840 cites W2117941247 @default.
- W1984978840 cites W2118100588 @default.
- W1984978840 cites W2122733285 @default.
- W1984978840 cites W2129564368 @default.
- W1984978840 cites W2129831132 @default.
- W1984978840 cites W2130094385 @default.
- W1984978840 cites W2134273960 @default.
- W1984978840 cites W2134568112 @default.
- W1984978840 cites W2137079713 @default.
- W1984978840 cites W2137946607 @default.
- W1984978840 cites W2139135093 @default.
- W1984978840 cites W2143908786 @default.
- W1984978840 cites W2145085734 @default.
- W1984978840 cites W2152080463 @default.
- W1984978840 cites W2153827974 @default.
- W1984978840 cites W2156543375 @default.
- W1984978840 cites W2158275940 @default.
- W1984978840 cites W2162904316 @default.
- W1984978840 cites W2163419627 @default.
- W1984978840 cites W2163685645 @default.
- W1984978840 cites W2169818249 @default.
- W1984978840 cites W2173398457 @default.
- W1984978840 cites W2397412402 @default.
- W1984978840 cites W2400119667 @default.
- W1984978840 cites W2400519446 @default.
- W1984978840 cites W2406114359 @default.
- W1984978840 cites W2407841998 @default.
- W1984978840 cites W2611894836 @default.
- W1984978840 cites W2615115461 @default.
- W1984978840 cites W1742799682 @default.
- W1984978840 cites W3202384584 @default.
- W1984978840 doi "https://doi.org/10.1504/ijmso.2013.054180" @default.
- W1984978840 hasPublicationYear "2013" @default.
- W1984978840 type Work @default.
- W1984978840 sameAs 1984978840 @default.
- W1984978840 citedByCount "20" @default.
- W1984978840 countsByYear W19849788402013 @default.
- W1984978840 countsByYear W19849788402014 @default.
- W1984978840 countsByYear W19849788402015 @default.
- W1984978840 countsByYear W19849788402016 @default.
- W1984978840 countsByYear W19849788402017 @default.
- W1984978840 countsByYear W19849788402018 @default.
- W1984978840 countsByYear W19849788402020 @default.
- W1984978840 countsByYear W19849788402021 @default.
- W1984978840 countsByYear W19849788402022 @default.
- W1984978840 countsByYear W19849788402023 @default.
- W1984978840 crossrefType "journal-article" @default.
- W1984978840 hasAuthorship W1984978840A5027431080 @default.
- W1984978840 hasAuthorship W1984978840A5091670421 @default.
- W1984978840 hasConcept C111472728 @default.
- W1984978840 hasConcept C138885662 @default.
- W1984978840 hasConcept C154945302 @default.
- W1984978840 hasConcept C205649164 @default.
- W1984978840 hasConcept C25810664 @default.
- W1984978840 hasConcept C2778755073 @default.
- W1984978840 hasConcept C41008148 @default.
- W1984978840 hasConcept C50644808 @default.
- W1984978840 hasConcept C58640448 @default.
- W1984978840 hasConceptScore W1984978840C111472728 @default.
- W1984978840 hasConceptScore W1984978840C138885662 @default.