Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985046616> ?p ?o ?g. }
- W1985046616 endingPage "173" @default.
- W1985046616 startingPage "170" @default.
- W1985046616 abstract "Space is not completely empty; the vacuum teems with quantum mechanical energy fluctuations able to generate an attractive force between objects that are very close to each other. This 'Casimir–Lifshitz' force can cause static friction or 'stiction' in nanomachines, which must be strongly reduced. Until now only attractive interactions have been reported but in theory, if vacuum is replaced by certain media, Casimir–Lifshitz forces should become repulsive. This has now been confirmed experimentally. Repulsion, weaker than the attractive force, was measured in a carefully chosen system of interacting materials immersed in fluid. The magnitude of both forces increases as separation decreases. The repulsive forces could conceivably allow quantum levitation of objects in a fluid and lead to new types of switchable nanoscale devices with ultra-low static friction. Levitation depends only on the dielectric properties of the various materials. The cover illustrates repulsion between a tiny gold sphere and a silica substrate (left). Replace the silica with gold (right), and the force becomes attractive. In a vacuum, the Casimir–Lifshitz force causes friction effects that either hinder or may be exploited in nanomechanical device applications. So far, only attractive interactions have been measured, but theory predicts that when vacuum is replaced with certain media, the Casimir–Lifshitz force can also be repulsive. This effect is now experimentally confirmed in this study, which carefully chooses a system of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive force whereas in both cases the magnitude of the force increases with decreasing surface separation. Quantum fluctuations create intermolecular forces that pervade macroscopic bodies1,2,3. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces4. However, as recognized in the theories of Casimir, Polder and Lifshitz5,6,7, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies8,9,10,11. Here we show experimentally that, in accord with theoretical prediction12, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir–Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction13,14,15." @default.
- W1985046616 created "2016-06-24" @default.
- W1985046616 creator A5003438806 @default.
- W1985046616 creator A5019974260 @default.
- W1985046616 creator A5066671589 @default.
- W1985046616 date "2009-01-01" @default.
- W1985046616 modified "2023-10-18" @default.
- W1985046616 title "Measured long-range repulsive Casimir–Lifshitz forces" @default.
- W1985046616 cites W1965601493 @default.
- W1985046616 cites W1966114653 @default.
- W1985046616 cites W1968717374 @default.
- W1985046616 cites W1979260646 @default.
- W1985046616 cites W1993398220 @default.
- W1985046616 cites W2003670332 @default.
- W1985046616 cites W2017408836 @default.
- W1985046616 cites W2018181242 @default.
- W1985046616 cites W2022149579 @default.
- W1985046616 cites W2022208120 @default.
- W1985046616 cites W2025759763 @default.
- W1985046616 cites W2029898402 @default.
- W1985046616 cites W2043153911 @default.
- W1985046616 cites W2051927835 @default.
- W1985046616 cites W2054996712 @default.
- W1985046616 cites W2073732106 @default.
- W1985046616 cites W2082799423 @default.
- W1985046616 cites W2083079215 @default.
- W1985046616 cites W2122141819 @default.
- W1985046616 cites W2159529419 @default.
- W1985046616 cites W2164928846 @default.
- W1985046616 cites W2984994146 @default.
- W1985046616 cites W3004006681 @default.
- W1985046616 cites W2075230286 @default.
- W1985046616 doi "https://doi.org/10.1038/nature07610" @default.
- W1985046616 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4169270" @default.
- W1985046616 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19129843" @default.
- W1985046616 hasPublicationYear "2009" @default.
- W1985046616 type Work @default.
- W1985046616 sameAs 1985046616 @default.
- W1985046616 citedByCount "572" @default.
- W1985046616 countsByYear W19850466162012 @default.
- W1985046616 countsByYear W19850466162013 @default.
- W1985046616 countsByYear W19850466162014 @default.
- W1985046616 countsByYear W19850466162015 @default.
- W1985046616 countsByYear W19850466162016 @default.
- W1985046616 countsByYear W19850466162017 @default.
- W1985046616 countsByYear W19850466162018 @default.
- W1985046616 countsByYear W19850466162019 @default.
- W1985046616 countsByYear W19850466162020 @default.
- W1985046616 countsByYear W19850466162021 @default.
- W1985046616 countsByYear W19850466162022 @default.
- W1985046616 countsByYear W19850466162023 @default.
- W1985046616 crossrefType "journal-article" @default.
- W1985046616 hasAuthorship W1985046616A5003438806 @default.
- W1985046616 hasAuthorship W1985046616A5019974260 @default.
- W1985046616 hasAuthorship W1985046616A5066671589 @default.
- W1985046616 hasBestOaLocation W19850466162 @default.
- W1985046616 hasConcept C106881136 @default.
- W1985046616 hasConcept C110339231 @default.
- W1985046616 hasConcept C121332964 @default.
- W1985046616 hasConcept C159985019 @default.
- W1985046616 hasConcept C16389437 @default.
- W1985046616 hasConcept C192562407 @default.
- W1985046616 hasConcept C204323151 @default.
- W1985046616 hasConcept C26873012 @default.
- W1985046616 hasConcept C27838914 @default.
- W1985046616 hasConcept C37977207 @default.
- W1985046616 hasConcept C62520636 @default.
- W1985046616 hasConcept C6947382 @default.
- W1985046616 hasConcept C74650414 @default.
- W1985046616 hasConcept C84114770 @default.
- W1985046616 hasConceptScore W1985046616C106881136 @default.
- W1985046616 hasConceptScore W1985046616C110339231 @default.
- W1985046616 hasConceptScore W1985046616C121332964 @default.
- W1985046616 hasConceptScore W1985046616C159985019 @default.
- W1985046616 hasConceptScore W1985046616C16389437 @default.
- W1985046616 hasConceptScore W1985046616C192562407 @default.
- W1985046616 hasConceptScore W1985046616C204323151 @default.
- W1985046616 hasConceptScore W1985046616C26873012 @default.
- W1985046616 hasConceptScore W1985046616C27838914 @default.
- W1985046616 hasConceptScore W1985046616C37977207 @default.
- W1985046616 hasConceptScore W1985046616C62520636 @default.
- W1985046616 hasConceptScore W1985046616C6947382 @default.
- W1985046616 hasConceptScore W1985046616C74650414 @default.
- W1985046616 hasConceptScore W1985046616C84114770 @default.
- W1985046616 hasIssue "7226" @default.
- W1985046616 hasLocation W19850466161 @default.
- W1985046616 hasLocation W19850466162 @default.
- W1985046616 hasLocation W19850466163 @default.
- W1985046616 hasLocation W19850466164 @default.
- W1985046616 hasOpenAccess W1985046616 @default.
- W1985046616 hasPrimaryLocation W19850466161 @default.
- W1985046616 hasRelatedWork W2015430390 @default.
- W1985046616 hasRelatedWork W2037687521 @default.
- W1985046616 hasRelatedWork W2168364199 @default.
- W1985046616 hasRelatedWork W2264908207 @default.
- W1985046616 hasRelatedWork W2371195235 @default.
- W1985046616 hasRelatedWork W2594358380 @default.
- W1985046616 hasRelatedWork W3011362442 @default.