Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985133095> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W1985133095 endingPage "44" @default.
- W1985133095 startingPage "30" @default.
- W1985133095 abstract "Weeds are responsible for yield losses in arable fields, whereas the role of weeds in agro-ecosystem food webs and in providing ecological services has been well established. Innovative weed management policies have to be designed to handle this trade-off between production and regulation services. As a consequence, there has been a growing interest in the study of the spatial distribution of weeds in crops, as a prerequisite to management. Such studies are usually based on maps of weed species. The issues involved in building probabilistic models of spatial processes as well as plausible maps of the process on the basis of models and observed data are frequently encountered and important. As important is the question of designing optimal sampling policies that make it possible to build maps of high probability when the model is known. This optimization problem is more complex to solve than the pure reconstruction problem and cannot generally be solved exactly. A generic approach to spatial sampling for optimizing map construction, based on Markov Random Fields (MRF), is provided and applied to the problem of weed sampling for mapping. MRF offer a powerful representation for reasoning on large sets of random variables in interaction. In the field of spatial statistics, the design of sampling policies has been largely studied in the case of continuous variables, using tools from the geostatistics domain. In the MRF case with finite state space variables, some heuristics have been proposed for the design problem but no universally accepted solution exists, particularly when considering adaptive policies as opposed to static ones. The problem of designing an adaptive sampling policy in an MRF can be formalized as an optimization problem. By combining tools from the fields of Artificial Intelligence (AI) and Computational Statistics, an original algorithm is then proposed for approximate resolution. This generic procedure, referred to as Least-Squares Dynamic Programming (LSDP), combines an approximation of the value of a sampling policy based on a linear regression, the construction of a batch of MRF realizations and a backwards induction algorithm. Based on an empirical comparison of the performance of LSDP with existing one-step-look-ahead sampling heuristics and solutions provided by classical AI algorithms, the following conclusions can be derived: (i) a naïve heuristic consisting of sampling sites where marginals are the most uncertain is already an efficient sampling approach; (ii) LSDP outperforms all the classical approaches we have tested; and (iii) LSDP outperforms the naïve heuristic approach in cases where sampling costs are not uniform over the set of variables or where sampling actions are constrained." @default.
- W1985133095 created "2016-06-24" @default.
- W1985133095 creator A5005958606 @default.
- W1985133095 creator A5027058032 @default.
- W1985133095 creator A5076738511 @default.
- W1985133095 creator A5083410100 @default.
- W1985133095 date "2014-04-01" @default.
- W1985133095 modified "2023-10-01" @default.
- W1985133095 title "Reinforcement learning-based design of sampling policies under cost constraints in Markov random fields: Application to weed map reconstruction" @default.
- W1985133095 cites W1489230020 @default.
- W1985133095 cites W1965511886 @default.
- W1985133095 cites W1967950205 @default.
- W1985133095 cites W2020999234 @default.
- W1985133095 cites W2022583430 @default.
- W1985133095 cites W2035759078 @default.
- W1985133095 cites W2041575310 @default.
- W1985133095 cites W2054477709 @default.
- W1985133095 cites W2083608684 @default.
- W1985133095 cites W2094118938 @default.
- W1985133095 cites W2094739707 @default.
- W1985133095 cites W2106795459 @default.
- W1985133095 cites W28766783 @default.
- W1985133095 cites W3106409394 @default.
- W1985133095 doi "https://doi.org/10.1016/j.csda.2013.10.002" @default.
- W1985133095 hasPublicationYear "2014" @default.
- W1985133095 type Work @default.
- W1985133095 sameAs 1985133095 @default.
- W1985133095 citedByCount "11" @default.
- W1985133095 countsByYear W19851330952014 @default.
- W1985133095 countsByYear W19851330952015 @default.
- W1985133095 countsByYear W19851330952016 @default.
- W1985133095 countsByYear W19851330952017 @default.
- W1985133095 countsByYear W19851330952018 @default.
- W1985133095 countsByYear W19851330952019 @default.
- W1985133095 countsByYear W19851330952020 @default.
- W1985133095 countsByYear W19851330952021 @default.
- W1985133095 countsByYear W19851330952023 @default.
- W1985133095 crossrefType "journal-article" @default.
- W1985133095 hasAuthorship W1985133095A5005958606 @default.
- W1985133095 hasAuthorship W1985133095A5027058032 @default.
- W1985133095 hasAuthorship W1985133095A5076738511 @default.
- W1985133095 hasAuthorship W1985133095A5083410100 @default.
- W1985133095 hasConcept C105795698 @default.
- W1985133095 hasConcept C106131492 @default.
- W1985133095 hasConcept C106189395 @default.
- W1985133095 hasConcept C126255220 @default.
- W1985133095 hasConcept C127705205 @default.
- W1985133095 hasConcept C130402806 @default.
- W1985133095 hasConcept C140779682 @default.
- W1985133095 hasConcept C154945302 @default.
- W1985133095 hasConcept C159886148 @default.
- W1985133095 hasConcept C202444582 @default.
- W1985133095 hasConcept C31972630 @default.
- W1985133095 hasConcept C33923547 @default.
- W1985133095 hasConcept C41008148 @default.
- W1985133095 hasConcept C49937458 @default.
- W1985133095 hasConcept C9652623 @default.
- W1985133095 hasConceptScore W1985133095C105795698 @default.
- W1985133095 hasConceptScore W1985133095C106131492 @default.
- W1985133095 hasConceptScore W1985133095C106189395 @default.
- W1985133095 hasConceptScore W1985133095C126255220 @default.
- W1985133095 hasConceptScore W1985133095C127705205 @default.
- W1985133095 hasConceptScore W1985133095C130402806 @default.
- W1985133095 hasConceptScore W1985133095C140779682 @default.
- W1985133095 hasConceptScore W1985133095C154945302 @default.
- W1985133095 hasConceptScore W1985133095C159886148 @default.
- W1985133095 hasConceptScore W1985133095C202444582 @default.
- W1985133095 hasConceptScore W1985133095C31972630 @default.
- W1985133095 hasConceptScore W1985133095C33923547 @default.
- W1985133095 hasConceptScore W1985133095C41008148 @default.
- W1985133095 hasConceptScore W1985133095C49937458 @default.
- W1985133095 hasConceptScore W1985133095C9652623 @default.
- W1985133095 hasLocation W19851330951 @default.
- W1985133095 hasLocation W19851330952 @default.
- W1985133095 hasOpenAccess W1985133095 @default.
- W1985133095 hasPrimaryLocation W19851330951 @default.
- W1985133095 hasRelatedWork W127374984 @default.
- W1985133095 hasRelatedWork W1515117609 @default.
- W1985133095 hasRelatedWork W2138810186 @default.
- W1985133095 hasRelatedWork W2144846765 @default.
- W1985133095 hasRelatedWork W2152650468 @default.
- W1985133095 hasRelatedWork W2156992384 @default.
- W1985133095 hasRelatedWork W2161367706 @default.
- W1985133095 hasRelatedWork W2570542232 @default.
- W1985133095 hasRelatedWork W3013781205 @default.
- W1985133095 hasRelatedWork W3174740571 @default.
- W1985133095 hasVolume "72" @default.
- W1985133095 isParatext "false" @default.
- W1985133095 isRetracted "false" @default.
- W1985133095 magId "1985133095" @default.
- W1985133095 workType "article" @default.