Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985148757> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W1985148757 endingPage "1115" @default.
- W1985148757 startingPage "1094" @default.
- W1985148757 abstract "In this work we investigate an extension of Mathieu's equation, the quasi-periodic (QP) Mathieu equation given by [ ddot{psi} + [delta + eps ,( cos t + cos omega t)], psi = 0 ] for small $eps$ and irrational $omega$. Of interest is the generation of stability diagrams that identify the points or regions in the $delta$-$omega$ parameter plane (for fixed $eps$) for which all solutions of the QP Mathieu equation are bounded. Numerical integration is employed to produce approximations to the true stability diagrams both directly and through contour plots ofLyapunov exponents. In addition, we derive approximate analytic expressions for transition curves using two distinct techniques: (1) a regular perturbation method under which transition curves $delta = delta(omega; eps)$ are each expanded in powers of $eps$, and (2) the method of harmonic balance utilizing Hill's determinants. Both analytic methods deliver results in good agreement with those generated numerically in the sense that predominant regions of instability are clearly coincident. And, both analytic techniques enable us to gain insight into the structure of the corresponding numerical plots. However, the perturbation method fails in the neighborhood of resonant values of $omega$ due to the problem of small divisors; the results obtained by harmonic balance do not display this undesirable feature." @default.
- W1985148757 created "2016-06-24" @default.
- W1985148757 creator A5053556799 @default.
- W1985148757 creator A5078626063 @default.
- W1985148757 date "1998-10-01" @default.
- W1985148757 modified "2023-09-23" @default.
- W1985148757 title "Transition Curves for the Quasi-Periodic Mathieu Equation" @default.
- W1985148757 cites W102024583 @default.
- W1985148757 cites W144835882 @default.
- W1985148757 cites W1600977221 @default.
- W1985148757 cites W1994513039 @default.
- W1985148757 cites W2001375278 @default.
- W1985148757 cites W2016246553 @default.
- W1985148757 cites W2017472779 @default.
- W1985148757 cites W2024373958 @default.
- W1985148757 cites W2026194087 @default.
- W1985148757 cites W2031802611 @default.
- W1985148757 cites W2038531793 @default.
- W1985148757 cites W2052187922 @default.
- W1985148757 cites W2059919504 @default.
- W1985148757 cites W2061864750 @default.
- W1985148757 cites W2076766879 @default.
- W1985148757 cites W2093553010 @default.
- W1985148757 cites W2133535076 @default.
- W1985148757 cites W2161028264 @default.
- W1985148757 cites W2166254743 @default.
- W1985148757 cites W2323070071 @default.
- W1985148757 cites W2970394767 @default.
- W1985148757 cites W4236179095 @default.
- W1985148757 cites W4299533763 @default.
- W1985148757 doi "https://doi.org/10.1137/s0036139996303877" @default.
- W1985148757 hasPublicationYear "1998" @default.
- W1985148757 type Work @default.
- W1985148757 sameAs 1985148757 @default.
- W1985148757 citedByCount "87" @default.
- W1985148757 countsByYear W19851487572012 @default.
- W1985148757 countsByYear W19851487572013 @default.
- W1985148757 countsByYear W19851487572014 @default.
- W1985148757 countsByYear W19851487572015 @default.
- W1985148757 countsByYear W19851487572016 @default.
- W1985148757 countsByYear W19851487572017 @default.
- W1985148757 countsByYear W19851487572018 @default.
- W1985148757 countsByYear W19851487572019 @default.
- W1985148757 countsByYear W19851487572020 @default.
- W1985148757 countsByYear W19851487572021 @default.
- W1985148757 countsByYear W19851487572022 @default.
- W1985148757 crossrefType "journal-article" @default.
- W1985148757 hasAuthorship W1985148757A5053556799 @default.
- W1985148757 hasAuthorship W1985148757A5078626063 @default.
- W1985148757 hasConcept C121332964 @default.
- W1985148757 hasConcept C121758426 @default.
- W1985148757 hasConcept C134306372 @default.
- W1985148757 hasConcept C157097347 @default.
- W1985148757 hasConcept C158622935 @default.
- W1985148757 hasConcept C177918212 @default.
- W1985148757 hasConcept C179117685 @default.
- W1985148757 hasConcept C207821765 @default.
- W1985148757 hasConcept C2779557605 @default.
- W1985148757 hasConcept C33923547 @default.
- W1985148757 hasConcept C34388435 @default.
- W1985148757 hasConcept C62520636 @default.
- W1985148757 hasConceptScore W1985148757C121332964 @default.
- W1985148757 hasConceptScore W1985148757C121758426 @default.
- W1985148757 hasConceptScore W1985148757C134306372 @default.
- W1985148757 hasConceptScore W1985148757C157097347 @default.
- W1985148757 hasConceptScore W1985148757C158622935 @default.
- W1985148757 hasConceptScore W1985148757C177918212 @default.
- W1985148757 hasConceptScore W1985148757C179117685 @default.
- W1985148757 hasConceptScore W1985148757C207821765 @default.
- W1985148757 hasConceptScore W1985148757C2779557605 @default.
- W1985148757 hasConceptScore W1985148757C33923547 @default.
- W1985148757 hasConceptScore W1985148757C34388435 @default.
- W1985148757 hasConceptScore W1985148757C62520636 @default.
- W1985148757 hasIssue "4" @default.
- W1985148757 hasLocation W19851487571 @default.
- W1985148757 hasOpenAccess W1985148757 @default.
- W1985148757 hasPrimaryLocation W19851487571 @default.
- W1985148757 hasRelatedWork W2019303306 @default.
- W1985148757 hasRelatedWork W2050102617 @default.
- W1985148757 hasRelatedWork W2087661861 @default.
- W1985148757 hasRelatedWork W2136053165 @default.
- W1985148757 hasRelatedWork W221013995 @default.
- W1985148757 hasRelatedWork W2783483520 @default.
- W1985148757 hasRelatedWork W4287877340 @default.
- W1985148757 hasRelatedWork W4301433536 @default.
- W1985148757 hasRelatedWork W4366766684 @default.
- W1985148757 hasRelatedWork W1927693868 @default.
- W1985148757 hasVolume "58" @default.
- W1985148757 isParatext "false" @default.
- W1985148757 isRetracted "false" @default.
- W1985148757 magId "1985148757" @default.
- W1985148757 workType "article" @default.