Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985172851> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W1985172851 endingPage "S211" @default.
- W1985172851 startingPage "S205" @default.
- W1985172851 abstract "Because many diseases induce early changes in tissue hemodynamic status, quantitative tissue perfusion imaging could have the capacity to characterize pathologic states, establish a diagnosis, and map the response to treatment. Since the first attempt from Kety ( 1 Kety S Measurement of regional circulation by the local clearance of radioactive sodium. Am Heart J. 1949; 38: 321 Crossref PubMed Scopus (271) Google Scholar ) to measure perfusion, calculations of perfusion have been made using different measurement techniques and different models, all based on the conservation of mass ( 2 Axel L Cerebral blood flow determination by rapid-sequence computed tomography. Radiology. 1980; 137: 679-686 Crossref PubMed Scopus (548) Google Scholar , 3 Berninger W Axel L Norman D Napel S Redington R Functional imaging of the brain using computed tomography. Radiology. 1981; 138: 711-716 Crossref PubMed Scopus (71) Google Scholar , 4 Rosen BR Belliveau JW Vevea JM Brady TJ Perfusion imaging with NMR contrast agents. Magn Res Med. 1989; 14: 249-265 Crossref Scopus (987) Google Scholar ). With its subsecond scan time and high resolution rate, slip-ring computed tomography (CT) appears well suited for tissue perfusion measurements, and fast CT has already been used to measure perfusion ( 5 Blomley M Coulden R Bufkin C Contrast bolus dynamic computed tomography for the measurement of solid organ perfusion. Invest Radiol. 1993; 28: 72-77 Crossref PubMed Scopus (113) Google Scholar ) in the cerebral ( 6 Hamberg L Hunter G Halpern E Hoop B Gazelle GS Wolf G Quantitative high-resolution measurement of cerebrovascular physiology with slip-ring CT. AJNR Am J Neuroradiol. 1996; 17: 639-650 PubMed Google Scholar ), myocardial ( 7 Rumberger J Bell M Measurement of myocardial perfusion and cardiac output using intravenous injection methods by ultrafast (cine) computed tomography. Invest Radiol. 1992; 27: 40-46 Crossref PubMed Scopus (43) Google Scholar , 8 Gould R Perfusion quantitation by ultrafast computed tomography. Invest Radiol. 1992; 27: 18-21 Crossref PubMed Scopus (21) Google Scholar ), renal ( 9 Jaschke W Gould R Cogan M Sievers R Lipton M Cine-CT measurement of cortical renal blood flow. J Comput Assist Tomogr. 1987; 11: 779-784 Crossref PubMed Scopus (39) Google Scholar ), and hepatic ( 10 Blomley M Coulden R Dawson P Liver perfusion studied with ultrafast CT. J Comput Assist Tomogr. 1995; 19: 424-433 Crossref PubMed Scopus (185) Google Scholar , 11 Miles KA Hayball MP Dixon AK Functional images of hepatic perfusion obtained with dynamic CT. Radiology. 1993; 188: 405-411 Crossref PubMed Scopus (324) Google Scholar , 12 Platt JF Francis IR Ellis JH Reige KA Liver metastases: early detection based on abnormal contrast material enhancement at dual-phased helical CT. Radiology. 1997; 205: 49-53 Crossref PubMed Scopus (72) Google Scholar , 13 Leggett DA Kelley BB Bunce IH Miles KA Colorectal cancer: diagnostic potential of CT measurements of hepatic perfusion and implications for contrast enhancement protocols. Radiology. 1997; 205: 716-720 Crossref PubMed Scopus (109) Google Scholar , 14 Halavaara J Hamberg LM Leong FS Hunter GJ Gazelle GS Wolf GL Functional CT with experimental intravascular contrast agent in the assessment of liver vascular physiology. Acad Radiol. 1996; 3: 946-952 Abstract Full Text PDF PubMed Scopus (14) Google Scholar ) circulations. By scanning sequentially at a fixed level, the passage of bolus of contrast medium may be tracked by changes in CT number within the tissue and afferent vessels. Time-attenuation curves extracted from vessel and parenchymal regions of interest (ROIs) are then used for perfusion measurement. The algorithms used are generally based on transit time measurement (the central volume theorem) or on compartmental analysis. Both types of modeling, however, are limited by the fact that the venous output is usually not measurable ( 15 Weisskoff R Chesler D Boxerman J Rosen B Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time?. Magn Reson Med. 1993; 29: 553-559 Crossref PubMed Scopus (302) Google Scholar ). Many attempts have been made to measure the hepatic blood flow (HBF). The liver's dual circulation is a considerable obstacle to its successful investigation; indeed, the liver enhancement after an injection of contrast medium results from an initial arterial input and a subsequent portal venous input." @default.
- W1985172851 created "2016-06-24" @default.
- W1985172851 creator A5002088948 @default.
- W1985172851 creator A5023852006 @default.
- W1985172851 creator A5048556415 @default.
- W1985172851 creator A5051887638 @default.
- W1985172851 creator A5051997866 @default.
- W1985172851 creator A5052714123 @default.
- W1985172851 creator A5060965906 @default.
- W1985172851 date "2002-01-01" @default.
- W1985172851 modified "2023-10-12" @default.
- W1985172851 title "Deconvolution Technique for Measuring Tissue Perfusion by Dynamic CT" @default.
- W1985172851 cites W1964615535 @default.
- W1985172851 cites W1974125693 @default.
- W1985172851 cites W1974774291 @default.
- W1985172851 cites W1980453583 @default.
- W1985172851 cites W1988785008 @default.
- W1985172851 cites W1995298928 @default.
- W1985172851 cites W2001618503 @default.
- W1985172851 cites W2005855357 @default.
- W1985172851 cites W2024861666 @default.
- W1985172851 cites W2037284375 @default.
- W1985172851 cites W2050758263 @default.
- W1985172851 cites W2052187896 @default.
- W1985172851 cites W2052832267 @default.
- W1985172851 cites W2062450591 @default.
- W1985172851 cites W2070662669 @default.
- W1985172851 cites W2071233005 @default.
- W1985172851 cites W2079037801 @default.
- W1985172851 cites W2083747931 @default.
- W1985172851 cites W2086770904 @default.
- W1985172851 cites W2093460922 @default.
- W1985172851 cites W2144601375 @default.
- W1985172851 cites W2327779994 @default.
- W1985172851 cites W2333111480 @default.
- W1985172851 doi "https://doi.org/10.1016/s1076-6332(03)80437-3" @default.
- W1985172851 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12019870" @default.
- W1985172851 hasPublicationYear "2002" @default.
- W1985172851 type Work @default.
- W1985172851 sameAs 1985172851 @default.
- W1985172851 citedByCount "22" @default.
- W1985172851 countsByYear W19851728512012 @default.
- W1985172851 countsByYear W19851728512013 @default.
- W1985172851 countsByYear W19851728512014 @default.
- W1985172851 countsByYear W19851728512018 @default.
- W1985172851 countsByYear W19851728512019 @default.
- W1985172851 countsByYear W19851728512021 @default.
- W1985172851 countsByYear W19851728512022 @default.
- W1985172851 crossrefType "journal-article" @default.
- W1985172851 hasAuthorship W1985172851A5002088948 @default.
- W1985172851 hasAuthorship W1985172851A5023852006 @default.
- W1985172851 hasAuthorship W1985172851A5048556415 @default.
- W1985172851 hasAuthorship W1985172851A5051887638 @default.
- W1985172851 hasAuthorship W1985172851A5051997866 @default.
- W1985172851 hasAuthorship W1985172851A5052714123 @default.
- W1985172851 hasAuthorship W1985172851A5060965906 @default.
- W1985172851 hasConcept C126838900 @default.
- W1985172851 hasConcept C135691158 @default.
- W1985172851 hasConcept C146957229 @default.
- W1985172851 hasConcept C163716698 @default.
- W1985172851 hasConcept C2989005 @default.
- W1985172851 hasConcept C544519230 @default.
- W1985172851 hasConcept C71924100 @default.
- W1985172851 hasConceptScore W1985172851C126838900 @default.
- W1985172851 hasConceptScore W1985172851C135691158 @default.
- W1985172851 hasConceptScore W1985172851C146957229 @default.
- W1985172851 hasConceptScore W1985172851C163716698 @default.
- W1985172851 hasConceptScore W1985172851C2989005 @default.
- W1985172851 hasConceptScore W1985172851C544519230 @default.
- W1985172851 hasConceptScore W1985172851C71924100 @default.
- W1985172851 hasIssue "1" @default.
- W1985172851 hasLocation W19851728511 @default.
- W1985172851 hasLocation W19851728512 @default.
- W1985172851 hasOpenAccess W1985172851 @default.
- W1985172851 hasPrimaryLocation W19851728511 @default.
- W1985172851 hasRelatedWork W104630177 @default.
- W1985172851 hasRelatedWork W2024932886 @default.
- W1985172851 hasRelatedWork W2051016982 @default.
- W1985172851 hasRelatedWork W2356249032 @default.
- W1985172851 hasRelatedWork W2365039145 @default.
- W1985172851 hasRelatedWork W2366627568 @default.
- W1985172851 hasRelatedWork W2382350448 @default.
- W1985172851 hasRelatedWork W2421106607 @default.
- W1985172851 hasRelatedWork W3032311490 @default.
- W1985172851 hasRelatedWork W3207490395 @default.
- W1985172851 hasVolume "9" @default.
- W1985172851 isParatext "false" @default.
- W1985172851 isRetracted "false" @default.
- W1985172851 magId "1985172851" @default.
- W1985172851 workType "article" @default.