Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985199672> ?p ?o ?g. }
- W1985199672 endingPage "15836" @default.
- W1985199672 startingPage "15828" @default.
- W1985199672 abstract "Modification of the lipid A moiety of bacterial lipopolysaccharide influences cell wall properties, endotoxic activity, and bacterial resistance to antimicrobial peptides. Known modifications are variation in the number or length of acyl chains and/or attached phosphoryl groups. Here we identified two genes (gnnA and gnnB) in the major foodborne pathogen Campylobacter jejuni that enable the synthesis of a GlcN3N precursor UDP 2-acetamido-3-amino-2,3-dideoxy-α-d-glucopyranose (UDP-GlcNAc3N) in the lipid A backbone. Mass spectrometry of purified lipooligosaccharide verified that the gene products facilitate the formation of a 2,3-diamino-2,3-dideoxy-d-glucose (GlcN3N) disaccharide lipid A backbone when compared with the β-1′-6-linked d-glucosamine (GlcN) disaccharide observed in Escherichia coli lipid A. Functional assays showed that inactivation of the gnnA or gnnB gene enhanced the TLR4-MD2-mediated NF-κB activation. The mutants also displayed increased susceptibility to killing by the antimicrobial peptides polymyxin B, colistin and the chicken cathelicidin-1. The gnnA and gnnB genes are organized in one operon with hemH, encoding a ferrochelatase catalyzing the last step in heme biosynthesis. These results indicate that lipid A modification resulting in amide-linked acyl chains in the lipid A is an effective mechanism to evade activation of the innate host defense and killing by antimicrobial peptides. Modification of the lipid A moiety of bacterial lipopolysaccharide influences cell wall properties, endotoxic activity, and bacterial resistance to antimicrobial peptides. Known modifications are variation in the number or length of acyl chains and/or attached phosphoryl groups. Here we identified two genes (gnnA and gnnB) in the major foodborne pathogen Campylobacter jejuni that enable the synthesis of a GlcN3N precursor UDP 2-acetamido-3-amino-2,3-dideoxy-α-d-glucopyranose (UDP-GlcNAc3N) in the lipid A backbone. Mass spectrometry of purified lipooligosaccharide verified that the gene products facilitate the formation of a 2,3-diamino-2,3-dideoxy-d-glucose (GlcN3N) disaccharide lipid A backbone when compared with the β-1′-6-linked d-glucosamine (GlcN) disaccharide observed in Escherichia coli lipid A. Functional assays showed that inactivation of the gnnA or gnnB gene enhanced the TLR4-MD2-mediated NF-κB activation. The mutants also displayed increased susceptibility to killing by the antimicrobial peptides polymyxin B, colistin and the chicken cathelicidin-1. The gnnA and gnnB genes are organized in one operon with hemH, encoding a ferrochelatase catalyzing the last step in heme biosynthesis. These results indicate that lipid A modification resulting in amide-linked acyl chains in the lipid A is an effective mechanism to evade activation of the innate host defense and killing by antimicrobial peptides." @default.
- W1985199672 created "2016-06-24" @default.
- W1985199672 creator A5001775324 @default.
- W1985199672 creator A5010857482 @default.
- W1985199672 creator A5018814859 @default.
- W1985199672 creator A5022402099 @default.
- W1985199672 creator A5027745980 @default.
- W1985199672 creator A5063746930 @default.
- W1985199672 creator A5079953847 @default.
- W1985199672 date "2010-05-01" @default.
- W1985199672 modified "2023-09-27" @default.
- W1985199672 title "Altered Linkage of Hydroxyacyl Chains in Lipid A of Campylobacter jejuni Reduces TLR4 Activation and Antimicrobial Resistance" @default.
- W1985199672 cites W1538572377 @default.
- W1985199672 cites W1551551630 @default.
- W1985199672 cites W1965270386 @default.
- W1985199672 cites W1969730825 @default.
- W1985199672 cites W1973753936 @default.
- W1985199672 cites W1985677799 @default.
- W1985199672 cites W1985782125 @default.
- W1985199672 cites W1987496983 @default.
- W1985199672 cites W1992245975 @default.
- W1985199672 cites W1994299597 @default.
- W1985199672 cites W1996901586 @default.
- W1985199672 cites W1997895282 @default.
- W1985199672 cites W2000474220 @default.
- W1985199672 cites W2003112779 @default.
- W1985199672 cites W2017597673 @default.
- W1985199672 cites W2020483175 @default.
- W1985199672 cites W2026046429 @default.
- W1985199672 cites W2035337730 @default.
- W1985199672 cites W2048757872 @default.
- W1985199672 cites W2053795435 @default.
- W1985199672 cites W2053994975 @default.
- W1985199672 cites W2064107380 @default.
- W1985199672 cites W2069940309 @default.
- W1985199672 cites W2072494970 @default.
- W1985199672 cites W2073578515 @default.
- W1985199672 cites W2078895028 @default.
- W1985199672 cites W2094414498 @default.
- W1985199672 cites W2115996594 @default.
- W1985199672 cites W2119839278 @default.
- W1985199672 cites W2120904752 @default.
- W1985199672 cites W2127934565 @default.
- W1985199672 cites W2128606491 @default.
- W1985199672 cites W2130317337 @default.
- W1985199672 cites W2130655121 @default.
- W1985199672 cites W2132242065 @default.
- W1985199672 cites W2134701031 @default.
- W1985199672 cites W2150921293 @default.
- W1985199672 cites W2160088726 @default.
- W1985199672 cites W2160993282 @default.
- W1985199672 cites W2162795093 @default.
- W1985199672 cites W2164603335 @default.
- W1985199672 cites W2171780940 @default.
- W1985199672 cites W4234317413 @default.
- W1985199672 doi "https://doi.org/10.1074/jbc.m110.102061" @default.
- W1985199672 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2871450" @default.
- W1985199672 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20351099" @default.
- W1985199672 hasPublicationYear "2010" @default.
- W1985199672 type Work @default.
- W1985199672 sameAs 1985199672 @default.
- W1985199672 citedByCount "50" @default.
- W1985199672 countsByYear W19851996722012 @default.
- W1985199672 countsByYear W19851996722013 @default.
- W1985199672 countsByYear W19851996722014 @default.
- W1985199672 countsByYear W19851996722015 @default.
- W1985199672 countsByYear W19851996722016 @default.
- W1985199672 countsByYear W19851996722017 @default.
- W1985199672 countsByYear W19851996722018 @default.
- W1985199672 countsByYear W19851996722019 @default.
- W1985199672 countsByYear W19851996722020 @default.
- W1985199672 countsByYear W19851996722021 @default.
- W1985199672 countsByYear W19851996722022 @default.
- W1985199672 countsByYear W19851996722023 @default.
- W1985199672 crossrefType "journal-article" @default.
- W1985199672 hasAuthorship W1985199672A5001775324 @default.
- W1985199672 hasAuthorship W1985199672A5010857482 @default.
- W1985199672 hasAuthorship W1985199672A5018814859 @default.
- W1985199672 hasAuthorship W1985199672A5022402099 @default.
- W1985199672 hasAuthorship W1985199672A5027745980 @default.
- W1985199672 hasAuthorship W1985199672A5063746930 @default.
- W1985199672 hasAuthorship W1985199672A5079953847 @default.
- W1985199672 hasBestOaLocation W19851996721 @default.
- W1985199672 hasConcept C104317684 @default.
- W1985199672 hasConcept C108625454 @default.
- W1985199672 hasConcept C134018914 @default.
- W1985199672 hasConcept C143065580 @default.
- W1985199672 hasConcept C144464004 @default.
- W1985199672 hasConcept C185592680 @default.
- W1985199672 hasConcept C206212055 @default.
- W1985199672 hasConcept C2776621215 @default.
- W1985199672 hasConcept C2776634448 @default.
- W1985199672 hasConcept C2776957140 @default.
- W1985199672 hasConcept C2777346074 @default.
- W1985199672 hasConcept C2777379352 @default.
- W1985199672 hasConcept C2778754761 @default.
- W1985199672 hasConcept C2779281246 @default.
- W1985199672 hasConcept C2779910956 @default.