Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985228917> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W1985228917 abstract "Feature selection is a natural choice of technique to scale up clustering. However, feature selection for clustering has received scant research attention compared to the vast literature on feature selection for classification. This is due to the absence of class labels in clustering. The approaches for feature selection for text clustering proposed in literature require (repeated) clustering of the entire corpus. We demonstrate that we can, instead, apply Monte Carlo (MC) techniques to “collect” features by inspecting only tiny portions of the entire dataset at any time. We do not require any global information about features to be computed over the entire dataset. We evaluate the trade-offs between the various cost parameters of the MC with the efficacy of the clustering produced and the time taken to produce it. Doing feature selection using MC, we are able to perform a clustering three to four times faster on standard text benchmarks. Such speed-up can enable near-real time clustering in enterprise workflows using limited memory." @default.
- W1985228917 created "2016-06-24" @default.
- W1985228917 creator A5077747661 @default.
- W1985228917 date "2014-10-01" @default.
- W1985228917 modified "2023-09-27" @default.
- W1985228917 title "Feature selection for text clustering in limited memory using Monte Carlo wrapper" @default.
- W1985228917 cites W1526719228 @default.
- W1985228917 cites W1605211498 @default.
- W1985228917 cites W1619226191 @default.
- W1985228917 cites W1921984393 @default.
- W1985228917 cites W1971318281 @default.
- W1985228917 cites W2001907516 @default.
- W1985228917 cites W2005422315 @default.
- W1985228917 cites W2040884411 @default.
- W1985228917 cites W2067462817 @default.
- W1985228917 cites W2102831150 @default.
- W1985228917 cites W2109535575 @default.
- W1985228917 cites W2116459725 @default.
- W1985228917 cites W2133462743 @default.
- W1985228917 cites W4235023610 @default.
- W1985228917 cites W4292023222 @default.
- W1985228917 doi "https://doi.org/10.1109/bigdata.2014.7004355" @default.
- W1985228917 hasPublicationYear "2014" @default.
- W1985228917 type Work @default.
- W1985228917 sameAs 1985228917 @default.
- W1985228917 citedByCount "1" @default.
- W1985228917 countsByYear W19852289172023 @default.
- W1985228917 crossrefType "proceedings-article" @default.
- W1985228917 hasAuthorship W1985228917A5077747661 @default.
- W1985228917 hasConcept C104047586 @default.
- W1985228917 hasConcept C119857082 @default.
- W1985228917 hasConcept C124101348 @default.
- W1985228917 hasConcept C138885662 @default.
- W1985228917 hasConcept C148483581 @default.
- W1985228917 hasConcept C153180895 @default.
- W1985228917 hasConcept C154945302 @default.
- W1985228917 hasConcept C167984511 @default.
- W1985228917 hasConcept C17212007 @default.
- W1985228917 hasConcept C184509293 @default.
- W1985228917 hasConcept C2776401178 @default.
- W1985228917 hasConcept C33704608 @default.
- W1985228917 hasConcept C41008148 @default.
- W1985228917 hasConcept C41895202 @default.
- W1985228917 hasConcept C73555534 @default.
- W1985228917 hasConcept C81917197 @default.
- W1985228917 hasConcept C94641424 @default.
- W1985228917 hasConceptScore W1985228917C104047586 @default.
- W1985228917 hasConceptScore W1985228917C119857082 @default.
- W1985228917 hasConceptScore W1985228917C124101348 @default.
- W1985228917 hasConceptScore W1985228917C138885662 @default.
- W1985228917 hasConceptScore W1985228917C148483581 @default.
- W1985228917 hasConceptScore W1985228917C153180895 @default.
- W1985228917 hasConceptScore W1985228917C154945302 @default.
- W1985228917 hasConceptScore W1985228917C167984511 @default.
- W1985228917 hasConceptScore W1985228917C17212007 @default.
- W1985228917 hasConceptScore W1985228917C184509293 @default.
- W1985228917 hasConceptScore W1985228917C2776401178 @default.
- W1985228917 hasConceptScore W1985228917C33704608 @default.
- W1985228917 hasConceptScore W1985228917C41008148 @default.
- W1985228917 hasConceptScore W1985228917C41895202 @default.
- W1985228917 hasConceptScore W1985228917C73555534 @default.
- W1985228917 hasConceptScore W1985228917C81917197 @default.
- W1985228917 hasConceptScore W1985228917C94641424 @default.
- W1985228917 hasLocation W19852289171 @default.
- W1985228917 hasOpenAccess W1985228917 @default.
- W1985228917 hasPrimaryLocation W19852289171 @default.
- W1985228917 hasRelatedWork W128918973 @default.
- W1985228917 hasRelatedWork W2140448560 @default.
- W1985228917 hasRelatedWork W2479830597 @default.
- W1985228917 hasRelatedWork W2592952084 @default.
- W1985228917 hasRelatedWork W2596222206 @default.
- W1985228917 hasRelatedWork W3040962399 @default.
- W1985228917 hasRelatedWork W3192757256 @default.
- W1985228917 hasRelatedWork W3197105638 @default.
- W1985228917 hasRelatedWork W4226410418 @default.
- W1985228917 hasRelatedWork W2922812195 @default.
- W1985228917 isParatext "false" @default.
- W1985228917 isRetracted "false" @default.
- W1985228917 magId "1985228917" @default.
- W1985228917 workType "article" @default.