Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985244573> ?p ?o ?g. }
- W1985244573 endingPage "122" @default.
- W1985244573 startingPage "111" @default.
- W1985244573 abstract "Previously, modulations in power of neuronal oscillations have been functionally linked to sensory, motor and cognitive operations. Such links are commonly established by relating the power modulations to specific target variables such as reaction times or task ratings. Consequently, the resulting spatio-spectral representation is subjected to neurophysiological interpretation. As an alternative, independent component analysis (ICA) or alternative decomposition methods can be applied and the power of the components may be related to the target variable. In this paper we show that these standard approaches are suboptimal as the first does not take into account the superposition of many sources due to volume conduction, while the second is unable to exploit available information about the target variable. To improve upon these approaches we introduce a novel (supervised) source separation framework called Source Power Comodulation (SPoC). SPoC makes use of the target variable in the decomposition process in order to give preference to components whose power comodulates with the target variable. We present two algorithms that implement the SPoC approach. Using simulations with a realistic head model, we show that the SPoC algorithms are able extract neuronal components exhibiting high correlation of power with the target variable. In this task, the SPoC algorithms outperform other commonly used techniques that are based on the sensor data or ICA approaches. Furthermore, using real electroencephalography (EEG) recordings during an auditory steady state paradigm, we demonstrate the utility of the SPoC algorithms by extracting neuronal components exhibiting high correlation of power with the intensity of the auditory input. Taking into account the results of the simulations and real EEG recordings, we conclude that SPoC represents an adequate approach for the optimal extraction of neuronal components showing coupling of power with continuously changing behaviorally relevant parameters." @default.
- W1985244573 created "2016-06-24" @default.
- W1985244573 creator A5025505609 @default.
- W1985244573 creator A5062297104 @default.
- W1985244573 creator A5067573169 @default.
- W1985244573 creator A5068256213 @default.
- W1985244573 creator A5082698816 @default.
- W1985244573 creator A5084731010 @default.
- W1985244573 creator A5090289264 @default.
- W1985244573 date "2014-02-01" @default.
- W1985244573 modified "2023-10-14" @default.
- W1985244573 title "SPoC: A novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters" @default.
- W1985244573 cites W1543088917 @default.
- W1985244573 cites W1968247093 @default.
- W1985244573 cites W1974092073 @default.
- W1985244573 cites W1975403113 @default.
- W1985244573 cites W1975495431 @default.
- W1985244573 cites W1976359337 @default.
- W1985244573 cites W1976830373 @default.
- W1985244573 cites W1978418497 @default.
- W1985244573 cites W1978921609 @default.
- W1985244573 cites W1979152340 @default.
- W1985244573 cites W1979189807 @default.
- W1985244573 cites W1997634192 @default.
- W1985244573 cites W2006874412 @default.
- W1985244573 cites W2007364043 @default.
- W1985244573 cites W2010406435 @default.
- W1985244573 cites W2012649452 @default.
- W1985244573 cites W2012883158 @default.
- W1985244573 cites W2016980059 @default.
- W1985244573 cites W2020745232 @default.
- W1985244573 cites W2021742455 @default.
- W1985244573 cites W2030729605 @default.
- W1985244573 cites W2035262634 @default.
- W1985244573 cites W2039052749 @default.
- W1985244573 cites W2040700600 @default.
- W1985244573 cites W2046317419 @default.
- W1985244573 cites W2047197335 @default.
- W1985244573 cites W2047401359 @default.
- W1985244573 cites W2048688498 @default.
- W1985244573 cites W2050056174 @default.
- W1985244573 cites W2057551310 @default.
- W1985244573 cites W2061815819 @default.
- W1985244573 cites W2064064010 @default.
- W1985244573 cites W2068356916 @default.
- W1985244573 cites W2070490243 @default.
- W1985244573 cites W2072735345 @default.
- W1985244573 cites W2080296945 @default.
- W1985244573 cites W2083106591 @default.
- W1985244573 cites W2085497225 @default.
- W1985244573 cites W2088443924 @default.
- W1985244573 cites W2090336387 @default.
- W1985244573 cites W2098330912 @default.
- W1985244573 cites W2099156632 @default.
- W1985244573 cites W2099509424 @default.
- W1985244573 cites W2099938345 @default.
- W1985244573 cites W2106912553 @default.
- W1985244573 cites W2112107026 @default.
- W1985244573 cites W2125737923 @default.
- W1985244573 cites W2128404967 @default.
- W1985244573 cites W2136680209 @default.
- W1985244573 cites W2141250485 @default.
- W1985244573 cites W2142875089 @default.
- W1985244573 cites W2152171700 @default.
- W1985244573 cites W2165871444 @default.
- W1985244573 cites W2166877971 @default.
- W1985244573 cites W2170302465 @default.
- W1985244573 cites W2171783484 @default.
- W1985244573 cites W2183443987 @default.
- W1985244573 cites W4238844806 @default.
- W1985244573 doi "https://doi.org/10.1016/j.neuroimage.2013.07.079" @default.
- W1985244573 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23954727" @default.
- W1985244573 hasPublicationYear "2014" @default.
- W1985244573 type Work @default.
- W1985244573 sameAs 1985244573 @default.
- W1985244573 citedByCount "98" @default.
- W1985244573 countsByYear W19852445732014 @default.
- W1985244573 countsByYear W19852445732015 @default.
- W1985244573 countsByYear W19852445732016 @default.
- W1985244573 countsByYear W19852445732017 @default.
- W1985244573 countsByYear W19852445732018 @default.
- W1985244573 countsByYear W19852445732019 @default.
- W1985244573 countsByYear W19852445732020 @default.
- W1985244573 countsByYear W19852445732021 @default.
- W1985244573 countsByYear W19852445732022 @default.
- W1985244573 countsByYear W19852445732023 @default.
- W1985244573 crossrefType "journal-article" @default.
- W1985244573 hasAuthorship W1985244573A5025505609 @default.
- W1985244573 hasAuthorship W1985244573A5062297104 @default.
- W1985244573 hasAuthorship W1985244573A5067573169 @default.
- W1985244573 hasAuthorship W1985244573A5068256213 @default.
- W1985244573 hasAuthorship W1985244573A5082698816 @default.
- W1985244573 hasAuthorship W1985244573A5084731010 @default.
- W1985244573 hasAuthorship W1985244573A5090289264 @default.
- W1985244573 hasBestOaLocation W19852445731 @default.
- W1985244573 hasConcept C134306372 @default.
- W1985244573 hasConcept C152478114 @default.
- W1985244573 hasConcept C153180895 @default.