Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985293896> ?p ?o ?g. }
- W1985293896 endingPage "993" @default.
- W1985293896 startingPage "985" @default.
- W1985293896 abstract "The application of RNA interference to treat disease is an important yet challenging concept in modern medicine. In particular, small interfering RNA (siRNA) have shown tremendous promise in the treatment of cancer. However, siRNA show poor pharmacological properties, which presents a major hurdle for effective disease treatment especially through intravenous delivery routes. In response to these shortcomings, a variety of nanoparticle carriers have emerged, which are designed to encapsulate, protect, and transport siRNA into diseased cells. To be effective as carrier vehicles, nanoparticles must overcome a series of biological hurdles throughout the course of delivery. As a result, one promising approach to siRNA carriers is dynamic, versatile nanoparticles that can perform several in vivo functions.Over the last several years, our research group has investigated hydrogel nanoparticles (nanogels) as candidate delivery vehicles for therapeutics, including siRNA. Throughout the course of our research, we have developed higher order architectures composed entirely of hydrogel components, where several different hydrogel chemistries may be isolated in unique compartments of a single construct. In this Account, we summarize a subset of our experiences in the design and application of nanogels in the context of drug delivery, summarizing the relevant characteristics for these materials as delivery vehicles for siRNA.Through the layering of multiple, orthogonal chemistries in a nanogel structure, we can impart multiple functions to the materials. We consider nanogels as a platform technology, where each functional element of the particle may be independently tuned to optimize the particle for the desired application. For instance, we can modify the shell compartment of a vehicle for cell-specific targeting or evasion of the innate immune system, whereas other compartments may incorporate fluorescent probes or regulate the encapsulation and release of macromolecular therapeutics.Proof-of-principle experiments have demonstrated the utility of multifunctional nanogels. For example, using a simple core/shell nanogel architecture, we have recently reported the delivery of siRNA to chemosensitize drug resistant ovarian cancer cells. Ongoing efforts have resulted in several advanced hydrogel structures, including biodegradable nanogels and multicompartment spheres. In parallel, our research group has studied other properties of the nanogels, including their behavior in confined environments and their ability to translocate through small pores." @default.
- W1985293896 created "2016-06-24" @default.
- W1985293896 creator A5026148821 @default.
- W1985293896 creator A5032779419 @default.
- W1985293896 date "2011-12-19" @default.
- W1985293896 modified "2023-10-17" @default.
- W1985293896 title "Multifunctional Nanogels for siRNA Delivery" @default.
- W1985293896 cites W1539664785 @default.
- W1985293896 cites W1928407788 @default.
- W1985293896 cites W1964146045 @default.
- W1985293896 cites W1965680643 @default.
- W1985293896 cites W1966847510 @default.
- W1985293896 cites W1968990013 @default.
- W1985293896 cites W1970396244 @default.
- W1985293896 cites W1972605174 @default.
- W1985293896 cites W1976060898 @default.
- W1985293896 cites W1980773456 @default.
- W1985293896 cites W1987753037 @default.
- W1985293896 cites W1987769702 @default.
- W1985293896 cites W1990455420 @default.
- W1985293896 cites W1991986285 @default.
- W1985293896 cites W1995980440 @default.
- W1985293896 cites W1996173073 @default.
- W1985293896 cites W1997522247 @default.
- W1985293896 cites W1998531158 @default.
- W1985293896 cites W2002516695 @default.
- W1985293896 cites W2003297417 @default.
- W1985293896 cites W2005790118 @default.
- W1985293896 cites W2016445534 @default.
- W1985293896 cites W2017845692 @default.
- W1985293896 cites W2021277867 @default.
- W1985293896 cites W2021626030 @default.
- W1985293896 cites W2029854123 @default.
- W1985293896 cites W2034073392 @default.
- W1985293896 cites W2036177306 @default.
- W1985293896 cites W2042493999 @default.
- W1985293896 cites W2049101201 @default.
- W1985293896 cites W2049288477 @default.
- W1985293896 cites W2053501481 @default.
- W1985293896 cites W2061801043 @default.
- W1985293896 cites W2075846851 @default.
- W1985293896 cites W2075861132 @default.
- W1985293896 cites W2087376771 @default.
- W1985293896 cites W2088039121 @default.
- W1985293896 cites W2089002536 @default.
- W1985293896 cites W2092700187 @default.
- W1985293896 cites W2095248480 @default.
- W1985293896 cites W2098507369 @default.
- W1985293896 cites W2106170020 @default.
- W1985293896 cites W2112310634 @default.
- W1985293896 cites W2120322972 @default.
- W1985293896 cites W2120814014 @default.
- W1985293896 cites W2122719564 @default.
- W1985293896 cites W2128869577 @default.
- W1985293896 cites W2132551021 @default.
- W1985293896 cites W2134208433 @default.
- W1985293896 cites W2135026770 @default.
- W1985293896 cites W2158558808 @default.
- W1985293896 cites W2159955926 @default.
- W1985293896 cites W2160865233 @default.
- W1985293896 cites W2324494488 @default.
- W1985293896 doi "https://doi.org/10.1021/ar200216f" @default.
- W1985293896 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22181582" @default.
- W1985293896 hasPublicationYear "2011" @default.
- W1985293896 type Work @default.
- W1985293896 sameAs 1985293896 @default.
- W1985293896 citedByCount "142" @default.
- W1985293896 countsByYear W19852938962012 @default.
- W1985293896 countsByYear W19852938962013 @default.
- W1985293896 countsByYear W19852938962014 @default.
- W1985293896 countsByYear W19852938962015 @default.
- W1985293896 countsByYear W19852938962016 @default.
- W1985293896 countsByYear W19852938962017 @default.
- W1985293896 countsByYear W19852938962018 @default.
- W1985293896 countsByYear W19852938962019 @default.
- W1985293896 countsByYear W19852938962020 @default.
- W1985293896 countsByYear W19852938962021 @default.
- W1985293896 countsByYear W19852938962022 @default.
- W1985293896 countsByYear W19852938962023 @default.
- W1985293896 crossrefType "journal-article" @default.
- W1985293896 hasAuthorship W1985293896A5026148821 @default.
- W1985293896 hasAuthorship W1985293896A5032779419 @default.
- W1985293896 hasConcept C104317684 @default.
- W1985293896 hasConcept C134424308 @default.
- W1985293896 hasConcept C151730666 @default.
- W1985293896 hasConcept C166703698 @default.
- W1985293896 hasConcept C171250308 @default.
- W1985293896 hasConcept C185592680 @default.
- W1985293896 hasConcept C192562407 @default.
- W1985293896 hasConcept C22615655 @default.
- W1985293896 hasConcept C2779343474 @default.
- W1985293896 hasConcept C2779820397 @default.
- W1985293896 hasConcept C41008148 @default.
- W1985293896 hasConcept C55493867 @default.
- W1985293896 hasConcept C67705224 @default.
- W1985293896 hasConcept C86803240 @default.
- W1985293896 hasConceptScore W1985293896C104317684 @default.
- W1985293896 hasConceptScore W1985293896C134424308 @default.